#************************************************************ #* MadGraph5_aMC@NLO * #* * #* * * * #* * * * * * #* * * * * 5 * * * * * #* * * * * * #* * * * #* * #* * #* VERSION 2.7.3 2020-06-21 * #* * #* The MadGraph5_aMC@NLO Development Team - Find us at * #* https://server06.fynu.ucl.ac.be/projects/madgraph * #* * #************************************************************ #* * #* Command File for MadGraph5_aMC@NLO * #* * #* run as ./bin/mg5_aMC filename * #* * #************************************************************ set default_unset_couplings 99 set group_subprocesses Auto set ignore_six_quark_processes False set loop_optimized_output True set loop_color_flows False set gauge unitary set complex_mass_scheme False set max_npoint_for_channel 0 import model sm define p = g u c d s u~ c~ d~ s~ define j = g u c d s u~ c~ d~ s~ define l+ = e+ mu+ define l- = e- mu- define vl = ve vm vt define vl~ = ve~ vm~ vt~ import model HC_NLO_X0_UFO-heft define p = 21 2 4 1 3 -2 -4 -1 -3 5 -5 # pass to 5 flavors define j = p generate p p > x0 [QCD] output ggh_NLO ###################################################################### ## Process generated with '-heft' model restrictions ## ## 5F scheme (MB=0) ## ## GLUON FUSION AT NLO using the Higgs Effective Field Theory ## ## (i.e. in the limit Mtop->infinity) ## ## ## ## These restrictions should be used only to generate ## ## X0 (plus jets) in the gluon fusion channel ## ## ## ## NB: ## ## Please be sure that before generating this process, ## ## you have correctly set the content of the multiparticles ## ## 'p' (proton) and 'j' (jet) inside MG5_aMC, ## ## accordingly to the massless flavour scheme ## ## 5F: p, j = g d d~ u u~ s s~ c c~ b b~ ## ## ## ## Please be sure that you have filtered out all the top quark ## ## loops using '/ t' in the generation command ## ###################################################################### ################################### ## INFORMATION FOR FRBLOCK ################################### Block frblock 1 1.000000e+03 # Lambda 2 1.000000e+00 # cosa 3 1.000000e+00 # kSM 8 1.000000e+00 # kHll 9 1.000000e+00 # kAll 10 1.000000e+00 # kHaa 11 1.000000e+00 # kAaa 12 1.000000e+00 # kHza 13 1.000000e+00 # kAza 14 1.000000e+00 # kHgg 15 1.000000e+00 # kAgg 16 0.000000e+00 # kHzz 17 0.000000e+00 # kAzz 18 0.000000e+00 # kHww 19 0.000000e+00 # kAww 20 0.000000e+00 # kHda 21 0.000000e+00 # kHdz 22 0.000000e+00 # kHdwR (real part of kHdw) 23 0.000000e+00 # kHdwI (imaginary part of kHdw) ################################### ### INFORMATION FOR LOOP #################################### Block loop 1 9.118800e+01 # MU_R ################################### ## INFORMATION FOR SMINPUTS ################################### Block SMINPUTS 1 1.325070e+02 # aEWM1 2 1.166390e-05 # Gf 3 1.180000e-01 # aS ################################### ## INFORMATION FOR MASS ################################### Block MASS 6 1.730000e+02 # MT 15 1.777000e+00 # MTA 23 9.118800e+01 # MZ 25 1.250000e+02 # MX0 ## Dependent parameters, given by model restrictions. ## Those values should be edited following the ## analytical expression. MG5 ignores those values ## but they are important for interfacing the output of MG5 ## to external program such as Pythia. 1 0.000000 # d : 0.0 2 0.000000 # u : 0.0 3 0.000000 # s : 0.0 4 0.000000 # c : 0.0 5 0.000000 # b : 0.0 11 0.000000 # e- : 0.0 12 0.000000 # ve : 0.0 13 0.000000 # mu- : 0.0 14 0.000000 # vm : 0.0 16 0.000000 # vt : 0.0 21 0.000000 # g : 0.0 22 0.000000 # a : 0.0 24 80.419002 # w+ : cmath.sqrt(MZ__exp__2/2. + cmath.sqrt(MZ__exp__4/4. - (aEW*cmath.pi*MZ__exp__2)/(Gf*sqrt__2))) 82 0.000000 # gh : 0.0 ################################### ## INFORMATION FOR YUKAWA ################################### Block YUKAWA 15 1.777000e+00 # ymtau ################################### ## INFORMATION FOR DECAY ################################### DECAY 6 1.491500e+00 # top width DECAY 23 2.441404e+00 # Z width DECAY 24 2.047600e+00 # W width DECAY 25 4.070000e-03 # X0 width ## Dependent parameters, given by model restrictions. ## Those values should be edited following the ## analytical expression. MG5 ignores those values ## but they are important for interfacing the output of MG5 ## to external program such as Pythia. DECAY 1 0.000000 # d : 0.0 DECAY 2 0.000000 # u : 0.0 DECAY 3 0.000000 # s : 0.0 DECAY 4 0.000000 # c : 0.0 DECAY 5 0.000000 # b : 0.0 DECAY 11 0.000000 # e- : 0.0 DECAY 12 0.000000 # ve : 0.0 DECAY 13 0.000000 # mu- : 0.0 DECAY 14 0.000000 # vm : 0.0 DECAY 15 0.000000 # ta- : 0.0 DECAY 16 0.000000 # vt : 0.0 DECAY 21 0.000000 # g : 0.0 DECAY 22 0.000000 # a : 0.0 DECAY 82 0.000000 # gh : 0.0 #=========================================================== # QUANTUM NUMBERS OF NEW STATE(S) (NON SM PDG CODE) #=========================================================== Block QNUMBERS 82 # gh 1 0 # 3 times electric charge 2 1 # number of spin states (2S+1) 3 8 # colour rep (1: singlet, 3: triplet, 8: octet) 4 1 # Particle/Antiparticle distinction (0=own anti) #*********************************************************************** # MadGraph5_aMC@NLO * # * # run_card.dat aMC@NLO * # * # This file is used to set the parameters of the run. * # * # Some notation/conventions: * # * # Lines starting with a hash (#) are info or comments * # * # mind the format: value = variable ! comment * # * # Some of the values of variables can be list. These can either be * # comma or space separated. * # * # To display additional parameter, you can use the command: * # update to_full * #*********************************************************************** # #******************* # Running parameters #******************* # #*********************************************************************** # Tag name for the run (one word) * #*********************************************************************** tag_1 = run_tag ! name of the run #*********************************************************************** # Number of LHE events (and their normalization) and the required * # (relative) accuracy on the Xsec. * # These values are ignored for fixed order runs * #*********************************************************************** 400000 = nevents -1.0 = req_acc ! Required accuracy (-1=auto determined from nevents) -1 = nevt_job! Max number of events per job in event generation. ! (-1= no split). #*********************************************************************** # Normalize the weights of LHE events such that they sum or average to * # the total cross section * #*********************************************************************** average = event_norm ! valid settings: average, sum, bias #*********************************************************************** # Number of points per itegration channel (ignored for aMC@NLO runs) * #*********************************************************************** 0.01 = req_acc_FO ! Required accuracy (-1=ignored, and use the ! number of points and iter. below) # These numbers are ignored except if req_acc_FO is equal to -1 5000 = npoints_FO_grid ! number of points to setup grids 4 = niters_FO_grid ! number of iter. to setup grids 10000 = npoints_FO ! number of points to compute Xsec 6 = niters_FO ! number of iter. to compute Xsec #*********************************************************************** # Random number seed * #*********************************************************************** 37 = iseed #*********************************************************************** # Collider type and energy * #*********************************************************************** 1 = lpp1 ! beam 1 type (0 = no PDF) 1 = lpp2 ! beam 2 type (0 = no PDF) 6500.0 = ebeam1 ! beam 1 energy in GeV 6500.0 = ebeam2 ! beam 2 energy in GeV #*********************************************************************** # PDF choice: this automatically fixes also alpha_s(MZ) and its evol. * #*********************************************************************** lhapdf = pdlabel ! PDF set 304200 = lhaid ! If pdlabel=lhapdf, this is the lhapdf number. Only ! numbers for central PDF sets are allowed. Can be a list; ! PDF sets beyond the first are included via reweighting. #*********************************************************************** # Include the NLO Monte Carlo subtr. terms for the following parton * # shower (HERWIG6 | HERWIGPP | PYTHIA6Q | PYTHIA6PT | PYTHIA8) * # WARNING: PYTHIA6PT works only for processes without FSR!!!! * #*********************************************************************** HERWIG6 = parton_shower 1.0 = shower_scale_factor ! multiply default shower starting ! scale by this factor #*********************************************************************** # Renormalization and factorization scales * # (Default functional form for the non-fixed scales is the sum of * # the transverse masses divided by two of all final state particles * # and partons. This can be changed in SubProcesses/set_scales.f or via * # dynamical_scale_choice option) * #*********************************************************************** False = fixed_ren_scale ! if .true. use fixed ren scale False = fixed_fac_scale ! if .true. use fixed fac scale 91.118 = muR_ref_fixed ! fixed ren reference scale 91.118 = muF_ref_fixed ! fixed fact reference scale -1 = dynamical_scale_choice ! Choose one (or more) of the predefined ! dynamical choices. Can be a list; scale choices beyond the ! first are included via reweighting 1.0 = muR_over_ref ! ratio of current muR over reference muR 1.0 = muF_over_ref ! ratio of current muF over reference muF #*********************************************************************** # Reweight variables for scale dependence and PDF uncertainty * #*********************************************************************** 1.0, 2.0, 0.5 = rw_rscale ! muR factors to be included by reweighting 1.0, 2.0, 0.5 = rw_fscale ! muF factors to be included by reweighting True = reweight_scale ! Reweight to get scale variation using the ! rw_rscale and rw_fscale factors. Should be a list of ! booleans of equal length to dynamical_scale_choice to ! specify for which choice to include scale dependence. True = reweight_PDF ! Reweight to get PDF uncertainty. Should be a ! list booleans of equal length to lhaid to specify for ! which PDF set to include the uncertainties. #*********************************************************************** # Store reweight information in the LHE file for off-line model- * # parameter reweighting at NLO+PS accuracy * #*********************************************************************** False = store_rwgt_info ! Store info for reweighting in LHE file #*********************************************************************** # ickkw parameter: * # 0: No merging * # 3: FxFx Merging - WARNING! Applies merging only at the hard-event * # level. After showering an MLM-type merging should be applied as * # well. See http://amcatnlo.cern.ch/FxFx_merging.htm for details. * # 4: UNLOPS merging (with pythia8 only). No interface from within * # MG5_aMC available, but available in Pythia8. * # -1: NNLL+NLO jet-veto computation. See arxiv:1412.8408 [hep-ph]. * #*********************************************************************** 0 = ickkw #*********************************************************************** # #*********************************************************************** # BW cutoff (M+/-bwcutoff*Gamma). Determines which resonances are * # written in the LHE event file * #*********************************************************************** 15.0 = bwcutoff #*********************************************************************** # Cuts on the jets. Jet clustering is performed by FastJet. * # - When matching to a parton shower, these generation cuts should be * # considerably softer than the analysis cuts. * # - More specific cuts can be specified in SubProcesses/cuts.f * #*********************************************************************** 1.0 = jetalgo ! FastJet jet algorithm (1=kT, 0=C/A, -1=anti-kT) 0.7 = jetradius ! The radius parameter for the jet algorithm 10.0 = ptj ! Min jet transverse momentum -1.0 = etaj ! Max jet abs(pseudo-rap) (a value .lt.0 means no cut) #*********************************************************************** # Cuts on the charged leptons (e+, e-, mu+, mu-, tau+ and tau-) * # More specific cuts can be specified in SubProcesses/cuts.f * #*********************************************************************** 0.0 = ptl ! Min lepton transverse momentum -1.0 = etal ! Max lepton abs(pseudo-rap) (a value .lt.0 means no cut) 0.0 = drll ! Min distance between opposite sign lepton pairs 0.0 = drll_sf ! Min distance between opp. sign same-flavor lepton pairs 0.0 = mll ! Min inv. mass of all opposite sign lepton pairs 30.0 = mll_sf ! Min inv. mass of all opp. sign same-flavor lepton pairs #*********************************************************************** # Photon-isolation cuts, according to hep-ph/9801442. When ptgmin=0, * # all the other parameters are ignored. * # More specific cuts can be specified in SubProcesses/cuts.f * #*********************************************************************** 20.0 = ptgmin ! Min photon transverse momentum -1.0 = etagamma ! Max photon abs(pseudo-rap) 0.4 = R0gamma ! Radius of isolation code 1.0 = xn ! n parameter of eq.(3.4) in hep-ph/9801442 1.0 = epsgamma ! epsilon_gamma parameter of eq.(3.4) in hep-ph/9801442 True = isoEM ! isolate photons from EM energy (photons and leptons) #*********************************************************************** # Cuts associated to MASSIVE particles identified by their PDG codes. * # All cuts are applied to both particles and anti-particles, so use * # POSITIVE PDG CODES only. Example of the syntax is {6 : 100} or * # {6:100, 25:200} for multiple particles * #*********************************************************************** {} = pt_min_pdg ! Min pT for a massive particle {} = pt_max_pdg ! Max pT for a massive particle {} = mxx_min_pdg ! inv. mass for any pair of (anti)particles #*********************************************************************** # For aMCfast+APPLGRID use in PDF fitting (http://amcfast.hepforge.org)* #*********************************************************************** 0 = iappl ! aMCfast switch (0=OFF, 1=prepare grids, 2=fill grids) #*********************************************************************** muR H_T/2 := sum_i mT(i)/2, i=final state muF1 H_T/2 := sum_i mT(i)/2, i=final state muF2 H_T/2 := sum_i mT(i)/2, i=final state QES H_T/2 := sum_i mT(i)/2, i=final state 1 0.320000E+00 2 0.320000E+00 3 0.500000E+00 4 0.155000E+01 5 0.495000E+01 11 0.510999E-03 13 0.105658E+00 15 0.177682E+01 21 0.750000E+00 dyn= -1 muR=0.10000E+01 muF=0.10000E+01 dyn= -1 muR=0.20000E+01 muF=0.10000E+01 dyn= -1 muR=0.50000E+00 muF=0.10000E+01 dyn= -1 muR=0.10000E+01 muF=0.20000E+01 dyn= -1 muR=0.20000E+01 muF=0.20000E+01 dyn= -1 muR=0.50000E+00 muF=0.20000E+01 dyn= -1 muR=0.10000E+01 muF=0.50000E+00 dyn= -1 muR=0.20000E+01 muF=0.50000E+00 dyn= -1 muR=0.50000E+00 muF=0.50000E+00 PDF= 304200 NNPDF31_nlo_as_0118_hessian PDF= 304201 NNPDF31_nlo_as_0118_hessian PDF= 304202 NNPDF31_nlo_as_0118_hessian PDF= 304203 NNPDF31_nlo_as_0118_hessian PDF= 304204 NNPDF31_nlo_as_0118_hessian PDF= 304205 NNPDF31_nlo_as_0118_hessian PDF= 304206 NNPDF31_nlo_as_0118_hessian PDF= 304207 NNPDF31_nlo_as_0118_hessian PDF= 304208 NNPDF31_nlo_as_0118_hessian PDF= 304209 NNPDF31_nlo_as_0118_hessian PDF= 304210 NNPDF31_nlo_as_0118_hessian PDF= 304211 NNPDF31_nlo_as_0118_hessian PDF= 304212 NNPDF31_nlo_as_0118_hessian PDF= 304213 NNPDF31_nlo_as_0118_hessian PDF= 304214 NNPDF31_nlo_as_0118_hessian PDF= 304215 NNPDF31_nlo_as_0118_hessian PDF= 304216 NNPDF31_nlo_as_0118_hessian PDF= 304217 NNPDF31_nlo_as_0118_hessian PDF= 304218 NNPDF31_nlo_as_0118_hessian PDF= 304219 NNPDF31_nlo_as_0118_hessian PDF= 304220 NNPDF31_nlo_as_0118_hessian PDF= 304221 NNPDF31_nlo_as_0118_hessian PDF= 304222 NNPDF31_nlo_as_0118_hessian PDF= 304223 NNPDF31_nlo_as_0118_hessian PDF= 304224 NNPDF31_nlo_as_0118_hessian PDF= 304225 NNPDF31_nlo_as_0118_hessian PDF= 304226 NNPDF31_nlo_as_0118_hessian PDF= 304227 NNPDF31_nlo_as_0118_hessian PDF= 304228 NNPDF31_nlo_as_0118_hessian PDF= 304229 NNPDF31_nlo_as_0118_hessian PDF= 304230 NNPDF31_nlo_as_0118_hessian PDF= 304231 NNPDF31_nlo_as_0118_hessian PDF= 304232 NNPDF31_nlo_as_0118_hessian PDF= 304233 NNPDF31_nlo_as_0118_hessian PDF= 304234 NNPDF31_nlo_as_0118_hessian PDF= 304235 NNPDF31_nlo_as_0118_hessian PDF= 304236 NNPDF31_nlo_as_0118_hessian PDF= 304237 NNPDF31_nlo_as_0118_hessian PDF= 304238 NNPDF31_nlo_as_0118_hessian PDF= 304239 NNPDF31_nlo_as_0118_hessian PDF= 304240 NNPDF31_nlo_as_0118_hessian PDF= 304241 NNPDF31_nlo_as_0118_hessian PDF= 304242 NNPDF31_nlo_as_0118_hessian PDF= 304243 NNPDF31_nlo_as_0118_hessian PDF= 304244 NNPDF31_nlo_as_0118_hessian PDF= 304245 NNPDF31_nlo_as_0118_hessian PDF= 304246 NNPDF31_nlo_as_0118_hessian PDF= 304247 NNPDF31_nlo_as_0118_hessian PDF= 304248 NNPDF31_nlo_as_0118_hessian PDF= 304249 NNPDF31_nlo_as_0118_hessian PDF= 304250 NNPDF31_nlo_as_0118_hessian PDF= 304251 NNPDF31_nlo_as_0118_hessian PDF= 304252 NNPDF31_nlo_as_0118_hessian PDF= 304253 NNPDF31_nlo_as_0118_hessian PDF= 304254 NNPDF31_nlo_as_0118_hessian PDF= 304255 NNPDF31_nlo_as_0118_hessian PDF= 304256 NNPDF31_nlo_as_0118_hessian PDF= 304257 NNPDF31_nlo_as_0118_hessian PDF= 304258 NNPDF31_nlo_as_0118_hessian PDF= 304259 NNPDF31_nlo_as_0118_hessian PDF= 304260 NNPDF31_nlo_as_0118_hessian PDF= 304261 NNPDF31_nlo_as_0118_hessian PDF= 304262 NNPDF31_nlo_as_0118_hessian PDF= 304263 NNPDF31_nlo_as_0118_hessian PDF= 304264 NNPDF31_nlo_as_0118_hessian PDF= 304265 NNPDF31_nlo_as_0118_hessian PDF= 304266 NNPDF31_nlo_as_0118_hessian PDF= 304267 NNPDF31_nlo_as_0118_hessian PDF= 304268 NNPDF31_nlo_as_0118_hessian PDF= 304269 NNPDF31_nlo_as_0118_hessian PDF= 304270 NNPDF31_nlo_as_0118_hessian PDF= 304271 NNPDF31_nlo_as_0118_hessian PDF= 304272 NNPDF31_nlo_as_0118_hessian PDF= 304273 NNPDF31_nlo_as_0118_hessian PDF= 304274 NNPDF31_nlo_as_0118_hessian PDF= 304275 NNPDF31_nlo_as_0118_hessian PDF= 304276 NNPDF31_nlo_as_0118_hessian PDF= 304277 NNPDF31_nlo_as_0118_hessian PDF= 304278 NNPDF31_nlo_as_0118_hessian PDF= 304279 NNPDF31_nlo_as_0118_hessian PDF= 304280 NNPDF31_nlo_as_0118_hessian PDF= 304281 NNPDF31_nlo_as_0118_hessian PDF= 304282 NNPDF31_nlo_as_0118_hessian PDF= 304283 NNPDF31_nlo_as_0118_hessian PDF= 304284 NNPDF31_nlo_as_0118_hessian PDF= 304285 NNPDF31_nlo_as_0118_hessian PDF= 304286 NNPDF31_nlo_as_0118_hessian PDF= 304287 NNPDF31_nlo_as_0118_hessian PDF= 304288 NNPDF31_nlo_as_0118_hessian PDF= 304289 NNPDF31_nlo_as_0118_hessian PDF= 304290 NNPDF31_nlo_as_0118_hessian PDF= 304291 NNPDF31_nlo_as_0118_hessian PDF= 304292 NNPDF31_nlo_as_0118_hessian PDF= 304293 NNPDF31_nlo_as_0118_hessian PDF= 304294 NNPDF31_nlo_as_0118_hessian PDF= 304295 NNPDF31_nlo_as_0118_hessian PDF= 304296 NNPDF31_nlo_as_0118_hessian PDF= 304297 NNPDF31_nlo_as_0118_hessian PDF= 304298 NNPDF31_nlo_as_0118_hessian PDF= 304299 NNPDF31_nlo_as_0118_hessian PDF= 304300 NNPDF31_nlo_as_0118_hessian
#************************************************************ #* MadGraph5_aMC@NLO * #* * #* * * * #* * * * * * #* * * * * 5 * * * * * #* * * * * * #* * * * #* * #* * #* VERSION 2.7.3 2020-06-21 * #* * #* The MadGraph5_aMC@NLO Development Team - Find us at * #* https://server06.fynu.ucl.ac.be/projects/madgraph * #* * #************************************************************ #* * #* Command File for MadGraph5_aMC@NLO * #* * #* run as ./bin/mg5_aMC filename * #* * #************************************************************ set default_unset_couplings 99 set group_subprocesses Auto set ignore_six_quark_processes False set loop_optimized_output True set loop_color_flows False set gauge unitary set complex_mass_scheme False set max_npoint_for_channel 0 import model sm define p = g u c d s u~ c~ d~ s~ define j = g u c d s u~ c~ d~ s~ define l+ = e+ mu+ define l- = e- mu- define vl = ve vm vt define vl~ = ve~ vm~ vt~ import model HC_NLO_X0_UFO-heft define p = 21 2 4 1 3 -2 -4 -1 -3 5 -5 # pass to 5 flavors define j = p generate p p > x0 [QCD] output ggh_NLO ###################################################################### ## Process generated with '-heft' model restrictions ## ## 5F scheme (MB=0) ## ## GLUON FUSION AT NLO using the Higgs Effective Field Theory ## ## (i.e. in the limit Mtop->infinity) ## ## ## ## These restrictions should be used only to generate ## ## X0 (plus jets) in the gluon fusion channel ## ## ## ## NB: ## ## Please be sure that before generating this process, ## ## you have correctly set the content of the multiparticles ## ## 'p' (proton) and 'j' (jet) inside MG5_aMC, ## ## accordingly to the massless flavour scheme ## ## 5F: p, j = g d d~ u u~ s s~ c c~ b b~ ## ## ## ## Please be sure that you have filtered out all the top quark ## ## loops using '/ t' in the generation command ## ###################################################################### ################################### ## INFORMATION FOR FRBLOCK ################################### Block frblock 1 1.000000e+03 # Lambda 2 1.000000e+00 # cosa 3 1.000000e+00 # kSM 8 1.000000e+00 # kHll 9 1.000000e+00 # kAll 10 1.000000e+00 # kHaa 11 1.000000e+00 # kAaa 12 1.000000e+00 # kHza 13 1.000000e+00 # kAza 14 1.000000e+00 # kHgg 15 1.000000e+00 # kAgg 16 0.000000e+00 # kHzz 17 0.000000e+00 # kAzz 18 0.000000e+00 # kHww 19 0.000000e+00 # kAww 20 0.000000e+00 # kHda 21 0.000000e+00 # kHdz 22 0.000000e+00 # kHdwR (real part of kHdw) 23 0.000000e+00 # kHdwI (imaginary part of kHdw) ################################### ### INFORMATION FOR LOOP #################################### Block loop 1 9.118800e+01 # MU_R ################################### ## INFORMATION FOR SMINPUTS ################################### Block SMINPUTS 1 1.325070e+02 # aEWM1 2 1.166390e-05 # Gf 3 1.180000e-01 # aS ################################### ## INFORMATION FOR MASS ################################### Block MASS 6 1.730000e+02 # MT 15 1.777000e+00 # MTA 23 9.118800e+01 # MZ 25 1.250000e+02 # MX0 ## Dependent parameters, given by model restrictions. ## Those values should be edited following the ## analytical expression. MG5 ignores those values ## but they are important for interfacing the output of MG5 ## to external program such as Pythia. 1 0.000000 # d : 0.0 2 0.000000 # u : 0.0 3 0.000000 # s : 0.0 4 0.000000 # c : 0.0 5 0.000000 # b : 0.0 11 0.000000 # e- : 0.0 12 0.000000 # ve : 0.0 13 0.000000 # mu- : 0.0 14 0.000000 # vm : 0.0 16 0.000000 # vt : 0.0 21 0.000000 # g : 0.0 22 0.000000 # a : 0.0 24 80.419002 # w+ : cmath.sqrt(MZ__exp__2/2. + cmath.sqrt(MZ__exp__4/4. - (aEW*cmath.pi*MZ__exp__2)/(Gf*sqrt__2))) 82 0.000000 # gh : 0.0 ################################### ## INFORMATION FOR YUKAWA ################################### Block YUKAWA 15 1.777000e+00 # ymtau ################################### ## INFORMATION FOR DECAY ################################### DECAY 6 1.491500e+00 # top width DECAY 23 2.441404e+00 # Z width DECAY 24 2.047600e+00 # W width DECAY 25 4.070000e-03 # X0 width ## Dependent parameters, given by model restrictions. ## Those values should be edited following the ## analytical expression. MG5 ignores those values ## but they are important for interfacing the output of MG5 ## to external program such as Pythia. DECAY 1 0.000000 # d : 0.0 DECAY 2 0.000000 # u : 0.0 DECAY 3 0.000000 # s : 0.0 DECAY 4 0.000000 # c : 0.0 DECAY 5 0.000000 # b : 0.0 DECAY 11 0.000000 # e- : 0.0 DECAY 12 0.000000 # ve : 0.0 DECAY 13 0.000000 # mu- : 0.0 DECAY 14 0.000000 # vm : 0.0 DECAY 15 0.000000 # ta- : 0.0 DECAY 16 0.000000 # vt : 0.0 DECAY 21 0.000000 # g : 0.0 DECAY 22 0.000000 # a : 0.0 DECAY 82 0.000000 # gh : 0.0 #=========================================================== # QUANTUM NUMBERS OF NEW STATE(S) (NON SM PDG CODE) #=========================================================== Block QNUMBERS 82 # gh 1 0 # 3 times electric charge 2 1 # number of spin states (2S+1) 3 8 # colour rep (1: singlet, 3: triplet, 8: octet) 4 1 # Particle/Antiparticle distinction (0=own anti) #*********************************************************************** # MadGraph5_aMC@NLO * # * # run_card.dat aMC@NLO * # * # This file is used to set the parameters of the run. * # * # Some notation/conventions: * # * # Lines starting with a hash (#) are info or comments * # * # mind the format: value = variable ! comment * # * # Some of the values of variables can be list. These can either be * # comma or space separated. * # * # To display additional parameter, you can use the command: * # update to_full * #*********************************************************************** # #******************* # Running parameters #******************* # #*********************************************************************** # Tag name for the run (one word) * #*********************************************************************** tag_1 = run_tag ! name of the run #*********************************************************************** # Number of LHE events (and their normalization) and the required * # (relative) accuracy on the Xsec. * # These values are ignored for fixed order runs * #*********************************************************************** 400000 = nevents -1.0 = req_acc ! Required accuracy (-1=auto determined from nevents) -1 = nevt_job! Max number of events per job in event generation. ! (-1= no split). #*********************************************************************** # Normalize the weights of LHE events such that they sum or average to * # the total cross section * #*********************************************************************** average = event_norm ! valid settings: average, sum, bias #*********************************************************************** # Number of points per itegration channel (ignored for aMC@NLO runs) * #*********************************************************************** 0.01 = req_acc_FO ! Required accuracy (-1=ignored, and use the ! number of points and iter. below) # These numbers are ignored except if req_acc_FO is equal to -1 5000 = npoints_FO_grid ! number of points to setup grids 4 = niters_FO_grid ! number of iter. to setup grids 10000 = npoints_FO ! number of points to compute Xsec 6 = niters_FO ! number of iter. to compute Xsec #*********************************************************************** # Random number seed * #*********************************************************************** 37 = iseed #*********************************************************************** # Collider type and energy * #*********************************************************************** 1 = lpp1 ! beam 1 type (0 = no PDF) 1 = lpp2 ! beam 2 type (0 = no PDF) 6500.0 = ebeam1 ! beam 1 energy in GeV 6500.0 = ebeam2 ! beam 2 energy in GeV #*********************************************************************** # PDF choice: this automatically fixes also alpha_s(MZ) and its evol. * #*********************************************************************** lhapdf = pdlabel ! PDF set 304200 = lhaid ! If pdlabel=lhapdf, this is the lhapdf number. Only ! numbers for central PDF sets are allowed. Can be a list; ! PDF sets beyond the first are included via reweighting. #*********************************************************************** # Include the NLO Monte Carlo subtr. terms for the following parton * # shower (HERWIG6 | HERWIGPP | PYTHIA6Q | PYTHIA6PT | PYTHIA8) * # WARNING: PYTHIA6PT works only for processes without FSR!!!! * #*********************************************************************** HERWIG6 = parton_shower 1.0 = shower_scale_factor ! multiply default shower starting ! scale by this factor #*********************************************************************** # Renormalization and factorization scales * # (Default functional form for the non-fixed scales is the sum of * # the transverse masses divided by two of all final state particles * # and partons. This can be changed in SubProcesses/set_scales.f or via * # dynamical_scale_choice option) * #*********************************************************************** False = fixed_ren_scale ! if .true. use fixed ren scale False = fixed_fac_scale ! if .true. use fixed fac scale 91.118 = muR_ref_fixed ! fixed ren reference scale 91.118 = muF_ref_fixed ! fixed fact reference scale -1 = dynamical_scale_choice ! Choose one (or more) of the predefined ! dynamical choices. Can be a list; scale choices beyond the ! first are included via reweighting 1.0 = muR_over_ref ! ratio of current muR over reference muR 1.0 = muF_over_ref ! ratio of current muF over reference muF #*********************************************************************** # Reweight variables for scale dependence and PDF uncertainty * #*********************************************************************** 1.0, 2.0, 0.5 = rw_rscale ! muR factors to be included by reweighting 1.0, 2.0, 0.5 = rw_fscale ! muF factors to be included by reweighting True = reweight_scale ! Reweight to get scale variation using the ! rw_rscale and rw_fscale factors. Should be a list of ! booleans of equal length to dynamical_scale_choice to ! specify for which choice to include scale dependence. True = reweight_PDF ! Reweight to get PDF uncertainty. Should be a ! list booleans of equal length to lhaid to specify for ! which PDF set to include the uncertainties. #*********************************************************************** # Store reweight information in the LHE file for off-line model- * # parameter reweighting at NLO+PS accuracy * #*********************************************************************** False = store_rwgt_info ! Store info for reweighting in LHE file #*********************************************************************** # ickkw parameter: * # 0: No merging * # 3: FxFx Merging - WARNING! Applies merging only at the hard-event * # level. After showering an MLM-type merging should be applied as * # well. See http://amcatnlo.cern.ch/FxFx_merging.htm for details. * # 4: UNLOPS merging (with pythia8 only). No interface from within * # MG5_aMC available, but available in Pythia8. * # -1: NNLL+NLO jet-veto computation. See arxiv:1412.8408 [hep-ph]. * #*********************************************************************** 0 = ickkw #*********************************************************************** # #*********************************************************************** # BW cutoff (M+/-bwcutoff*Gamma). Determines which resonances are * # written in the LHE event file * #*********************************************************************** 15.0 = bwcutoff #*********************************************************************** # Cuts on the jets. Jet clustering is performed by FastJet. * # - When matching to a parton shower, these generation cuts should be * # considerably softer than the analysis cuts. * # - More specific cuts can be specified in SubProcesses/cuts.f * #*********************************************************************** 1.0 = jetalgo ! FastJet jet algorithm (1=kT, 0=C/A, -1=anti-kT) 0.7 = jetradius ! The radius parameter for the jet algorithm 10.0 = ptj ! Min jet transverse momentum -1.0 = etaj ! Max jet abs(pseudo-rap) (a value .lt.0 means no cut) #*********************************************************************** # Cuts on the charged leptons (e+, e-, mu+, mu-, tau+ and tau-) * # More specific cuts can be specified in SubProcesses/cuts.f * #*********************************************************************** 0.0 = ptl ! Min lepton transverse momentum -1.0 = etal ! Max lepton abs(pseudo-rap) (a value .lt.0 means no cut) 0.0 = drll ! Min distance between opposite sign lepton pairs 0.0 = drll_sf ! Min distance between opp. sign same-flavor lepton pairs 0.0 = mll ! Min inv. mass of all opposite sign lepton pairs 30.0 = mll_sf ! Min inv. mass of all opp. sign same-flavor lepton pairs #*********************************************************************** # Photon-isolation cuts, according to hep-ph/9801442. When ptgmin=0, * # all the other parameters are ignored. * # More specific cuts can be specified in SubProcesses/cuts.f * #*********************************************************************** 20.0 = ptgmin ! Min photon transverse momentum -1.0 = etagamma ! Max photon abs(pseudo-rap) 0.4 = R0gamma ! Radius of isolation code 1.0 = xn ! n parameter of eq.(3.4) in hep-ph/9801442 1.0 = epsgamma ! epsilon_gamma parameter of eq.(3.4) in hep-ph/9801442 True = isoEM ! isolate photons from EM energy (photons and leptons) #*********************************************************************** # Cuts associated to MASSIVE particles identified by their PDG codes. * # All cuts are applied to both particles and anti-particles, so use * # POSITIVE PDG CODES only. Example of the syntax is {6 : 100} or * # {6:100, 25:200} for multiple particles * #*********************************************************************** {} = pt_min_pdg ! Min pT for a massive particle {} = pt_max_pdg ! Max pT for a massive particle {} = mxx_min_pdg ! inv. mass for any pair of (anti)particles #*********************************************************************** # For aMCfast+APPLGRID use in PDF fitting (http://amcfast.hepforge.org)* #*********************************************************************** 0 = iappl ! aMCfast switch (0=OFF, 1=prepare grids, 2=fill grids) #*********************************************************************** muR H_T/2 := sum_i mT(i)/2, i=final state muF1 H_T/2 := sum_i mT(i)/2, i=final state muF2 H_T/2 := sum_i mT(i)/2, i=final state QES H_T/2 := sum_i mT(i)/2, i=final state 1 0.320000E+00 2 0.320000E+00 3 0.500000E+00 4 0.155000E+01 5 0.495000E+01 11 0.510999E-03 13 0.105658E+00 15 0.177682E+01 21 0.750000E+00 dyn= -1 muR=0.10000E+01 muF=0.10000E+01 dyn= -1 muR=0.20000E+01 muF=0.10000E+01 dyn= -1 muR=0.50000E+00 muF=0.10000E+01 dyn= -1 muR=0.10000E+01 muF=0.20000E+01 dyn= -1 muR=0.20000E+01 muF=0.20000E+01 dyn= -1 muR=0.50000E+00 muF=0.20000E+01 dyn= -1 muR=0.10000E+01 muF=0.50000E+00 dyn= -1 muR=0.20000E+01 muF=0.50000E+00 dyn= -1 muR=0.50000E+00 muF=0.50000E+00 PDF= 304200 NNPDF31_nlo_as_0118_hessian PDF= 304201 NNPDF31_nlo_as_0118_hessian PDF= 304202 NNPDF31_nlo_as_0118_hessian PDF= 304203 NNPDF31_nlo_as_0118_hessian PDF= 304204 NNPDF31_nlo_as_0118_hessian PDF= 304205 NNPDF31_nlo_as_0118_hessian PDF= 304206 NNPDF31_nlo_as_0118_hessian PDF= 304207 NNPDF31_nlo_as_0118_hessian PDF= 304208 NNPDF31_nlo_as_0118_hessian PDF= 304209 NNPDF31_nlo_as_0118_hessian PDF= 304210 NNPDF31_nlo_as_0118_hessian PDF= 304211 NNPDF31_nlo_as_0118_hessian PDF= 304212 NNPDF31_nlo_as_0118_hessian PDF= 304213 NNPDF31_nlo_as_0118_hessian PDF= 304214 NNPDF31_nlo_as_0118_hessian PDF= 304215 NNPDF31_nlo_as_0118_hessian PDF= 304216 NNPDF31_nlo_as_0118_hessian PDF= 304217 NNPDF31_nlo_as_0118_hessian PDF= 304218 NNPDF31_nlo_as_0118_hessian PDF= 304219 NNPDF31_nlo_as_0118_hessian PDF= 304220 NNPDF31_nlo_as_0118_hessian PDF= 304221 NNPDF31_nlo_as_0118_hessian PDF= 304222 NNPDF31_nlo_as_0118_hessian PDF= 304223 NNPDF31_nlo_as_0118_hessian PDF= 304224 NNPDF31_nlo_as_0118_hessian PDF= 304225 NNPDF31_nlo_as_0118_hessian PDF= 304226 NNPDF31_nlo_as_0118_hessian PDF= 304227 NNPDF31_nlo_as_0118_hessian PDF= 304228 NNPDF31_nlo_as_0118_hessian PDF= 304229 NNPDF31_nlo_as_0118_hessian PDF= 304230 NNPDF31_nlo_as_0118_hessian PDF= 304231 NNPDF31_nlo_as_0118_hessian PDF= 304232 NNPDF31_nlo_as_0118_hessian PDF= 304233 NNPDF31_nlo_as_0118_hessian PDF= 304234 NNPDF31_nlo_as_0118_hessian PDF= 304235 NNPDF31_nlo_as_0118_hessian PDF= 304236 NNPDF31_nlo_as_0118_hessian PDF= 304237 NNPDF31_nlo_as_0118_hessian PDF= 304238 NNPDF31_nlo_as_0118_hessian PDF= 304239 NNPDF31_nlo_as_0118_hessian PDF= 304240 NNPDF31_nlo_as_0118_hessian PDF= 304241 NNPDF31_nlo_as_0118_hessian PDF= 304242 NNPDF31_nlo_as_0118_hessian PDF= 304243 NNPDF31_nlo_as_0118_hessian PDF= 304244 NNPDF31_nlo_as_0118_hessian PDF= 304245 NNPDF31_nlo_as_0118_hessian PDF= 304246 NNPDF31_nlo_as_0118_hessian PDF= 304247 NNPDF31_nlo_as_0118_hessian PDF= 304248 NNPDF31_nlo_as_0118_hessian PDF= 304249 NNPDF31_nlo_as_0118_hessian PDF= 304250 NNPDF31_nlo_as_0118_hessian PDF= 304251 NNPDF31_nlo_as_0118_hessian PDF= 304252 NNPDF31_nlo_as_0118_hessian PDF= 304253 NNPDF31_nlo_as_0118_hessian PDF= 304254 NNPDF31_nlo_as_0118_hessian PDF= 304255 NNPDF31_nlo_as_0118_hessian PDF= 304256 NNPDF31_nlo_as_0118_hessian PDF= 304257 NNPDF31_nlo_as_0118_hessian PDF= 304258 NNPDF31_nlo_as_0118_hessian PDF= 304259 NNPDF31_nlo_as_0118_hessian PDF= 304260 NNPDF31_nlo_as_0118_hessian PDF= 304261 NNPDF31_nlo_as_0118_hessian PDF= 304262 NNPDF31_nlo_as_0118_hessian PDF= 304263 NNPDF31_nlo_as_0118_hessian PDF= 304264 NNPDF31_nlo_as_0118_hessian PDF= 304265 NNPDF31_nlo_as_0118_hessian PDF= 304266 NNPDF31_nlo_as_0118_hessian PDF= 304267 NNPDF31_nlo_as_0118_hessian PDF= 304268 NNPDF31_nlo_as_0118_hessian PDF= 304269 NNPDF31_nlo_as_0118_hessian PDF= 304270 NNPDF31_nlo_as_0118_hessian PDF= 304271 NNPDF31_nlo_as_0118_hessian PDF= 304272 NNPDF31_nlo_as_0118_hessian PDF= 304273 NNPDF31_nlo_as_0118_hessian PDF= 304274 NNPDF31_nlo_as_0118_hessian PDF= 304275 NNPDF31_nlo_as_0118_hessian PDF= 304276 NNPDF31_nlo_as_0118_hessian PDF= 304277 NNPDF31_nlo_as_0118_hessian PDF= 304278 NNPDF31_nlo_as_0118_hessian PDF= 304279 NNPDF31_nlo_as_0118_hessian PDF= 304280 NNPDF31_nlo_as_0118_hessian PDF= 304281 NNPDF31_nlo_as_0118_hessian PDF= 304282 NNPDF31_nlo_as_0118_hessian PDF= 304283 NNPDF31_nlo_as_0118_hessian PDF= 304284 NNPDF31_nlo_as_0118_hessian PDF= 304285 NNPDF31_nlo_as_0118_hessian PDF= 304286 NNPDF31_nlo_as_0118_hessian PDF= 304287 NNPDF31_nlo_as_0118_hessian PDF= 304288 NNPDF31_nlo_as_0118_hessian PDF= 304289 NNPDF31_nlo_as_0118_hessian PDF= 304290 NNPDF31_nlo_as_0118_hessian PDF= 304291 NNPDF31_nlo_as_0118_hessian PDF= 304292 NNPDF31_nlo_as_0118_hessian PDF= 304293 NNPDF31_nlo_as_0118_hessian PDF= 304294 NNPDF31_nlo_as_0118_hessian PDF= 304295 NNPDF31_nlo_as_0118_hessian PDF= 304296 NNPDF31_nlo_as_0118_hessian PDF= 304297 NNPDF31_nlo_as_0118_hessian PDF= 304298 NNPDF31_nlo_as_0118_hessian PDF= 304299 NNPDF31_nlo_as_0118_hessian PDF= 304300 NNPDF31_nlo_as_0118_hessian
#************************************************************ #* MadGraph5_aMC@NLO * #* * #* * * * #* * * * * * #* * * * * 5 * * * * * #* * * * * * #* * * * #* * #* * #* VERSION 2.7.3 2020-06-21 * #* * #* The MadGraph5_aMC@NLO Development Team - Find us at * #* https://server06.fynu.ucl.ac.be/projects/madgraph * #* * #************************************************************ #* * #* Command File for MadGraph5_aMC@NLO * #* * #* run as ./bin/mg5_aMC filename * #* * #************************************************************ set default_unset_couplings 99 set group_subprocesses Auto set ignore_six_quark_processes False set loop_optimized_output True set loop_color_flows False set gauge unitary set complex_mass_scheme False set max_npoint_for_channel 0 import model sm define p = g u c d s u~ c~ d~ s~ define j = g u c d s u~ c~ d~ s~ define l+ = e+ mu+ define l- = e- mu- define vl = ve vm vt define vl~ = ve~ vm~ vt~ import model HC_NLO_X0_UFO-heft define p = 21 2 4 1 3 -2 -4 -1 -3 5 -5 # pass to 5 flavors define j = p generate p p > x0 [QCD] output ggh_NLO ###################################################################### ## Process generated with '-heft' model restrictions ## ## 5F scheme (MB=0) ## ## GLUON FUSION AT NLO using the Higgs Effective Field Theory ## ## (i.e. in the limit Mtop->infinity) ## ## ## ## These restrictions should be used only to generate ## ## X0 (plus jets) in the gluon fusion channel ## ## ## ## NB: ## ## Please be sure that before generating this process, ## ## you have correctly set the content of the multiparticles ## ## 'p' (proton) and 'j' (jet) inside MG5_aMC, ## ## accordingly to the massless flavour scheme ## ## 5F: p, j = g d d~ u u~ s s~ c c~ b b~ ## ## ## ## Please be sure that you have filtered out all the top quark ## ## loops using '/ t' in the generation command ## ###################################################################### ################################### ## INFORMATION FOR FRBLOCK ################################### Block frblock 1 1.000000e+03 # Lambda 2 1.000000e+00 # cosa 3 1.000000e+00 # kSM 8 1.000000e+00 # kHll 9 1.000000e+00 # kAll 10 1.000000e+00 # kHaa 11 1.000000e+00 # kAaa 12 1.000000e+00 # kHza 13 1.000000e+00 # kAza 14 1.000000e+00 # kHgg 15 1.000000e+00 # kAgg 16 0.000000e+00 # kHzz 17 0.000000e+00 # kAzz 18 0.000000e+00 # kHww 19 0.000000e+00 # kAww 20 0.000000e+00 # kHda 21 0.000000e+00 # kHdz 22 0.000000e+00 # kHdwR (real part of kHdw) 23 0.000000e+00 # kHdwI (imaginary part of kHdw) ################################### ### INFORMATION FOR LOOP #################################### Block loop 1 9.118800e+01 # MU_R ################################### ## INFORMATION FOR SMINPUTS ################################### Block SMINPUTS 1 1.325070e+02 # aEWM1 2 1.166390e-05 # Gf 3 1.180000e-01 # aS ################################### ## INFORMATION FOR MASS ################################### Block MASS 6 1.730000e+02 # MT 15 1.777000e+00 # MTA 23 9.118800e+01 # MZ 25 1.250000e+02 # MX0 ## Dependent parameters, given by model restrictions. ## Those values should be edited following the ## analytical expression. MG5 ignores those values ## but they are important for interfacing the output of MG5 ## to external program such as Pythia. 1 0.000000 # d : 0.0 2 0.000000 # u : 0.0 3 0.000000 # s : 0.0 4 0.000000 # c : 0.0 5 0.000000 # b : 0.0 11 0.000000 # e- : 0.0 12 0.000000 # ve : 0.0 13 0.000000 # mu- : 0.0 14 0.000000 # vm : 0.0 16 0.000000 # vt : 0.0 21 0.000000 # g : 0.0 22 0.000000 # a : 0.0 24 80.419002 # w+ : cmath.sqrt(MZ__exp__2/2. + cmath.sqrt(MZ__exp__4/4. - (aEW*cmath.pi*MZ__exp__2)/(Gf*sqrt__2))) 82 0.000000 # gh : 0.0 ################################### ## INFORMATION FOR YUKAWA ################################### Block YUKAWA 15 1.777000e+00 # ymtau ################################### ## INFORMATION FOR DECAY ################################### DECAY 6 1.491500e+00 # top width DECAY 23 2.441404e+00 # Z width DECAY 24 2.047600e+00 # W width DECAY 25 4.070000e-03 # X0 width ## Dependent parameters, given by model restrictions. ## Those values should be edited following the ## analytical expression. MG5 ignores those values ## but they are important for interfacing the output of MG5 ## to external program such as Pythia. DECAY 1 0.000000 # d : 0.0 DECAY 2 0.000000 # u : 0.0 DECAY 3 0.000000 # s : 0.0 DECAY 4 0.000000 # c : 0.0 DECAY 5 0.000000 # b : 0.0 DECAY 11 0.000000 # e- : 0.0 DECAY 12 0.000000 # ve : 0.0 DECAY 13 0.000000 # mu- : 0.0 DECAY 14 0.000000 # vm : 0.0 DECAY 15 0.000000 # ta- : 0.0 DECAY 16 0.000000 # vt : 0.0 DECAY 21 0.000000 # g : 0.0 DECAY 22 0.000000 # a : 0.0 DECAY 82 0.000000 # gh : 0.0 #=========================================================== # QUANTUM NUMBERS OF NEW STATE(S) (NON SM PDG CODE) #=========================================================== Block QNUMBERS 82 # gh 1 0 # 3 times electric charge 2 1 # number of spin states (2S+1) 3 8 # colour rep (1: singlet, 3: triplet, 8: octet) 4 1 # Particle/Antiparticle distinction (0=own anti) #*********************************************************************** # MadGraph5_aMC@NLO * # * # run_card.dat aMC@NLO * # * # This file is used to set the parameters of the run. * # * # Some notation/conventions: * # * # Lines starting with a hash (#) are info or comments * # * # mind the format: value = variable ! comment * # * # Some of the values of variables can be list. These can either be * # comma or space separated. * # * # To display additional parameter, you can use the command: * # update to_full * #*********************************************************************** # #******************* # Running parameters #******************* # #*********************************************************************** # Tag name for the run (one word) * #*********************************************************************** tag_1 = run_tag ! name of the run #*********************************************************************** # Number of LHE events (and their normalization) and the required * # (relative) accuracy on the Xsec. * # These values are ignored for fixed order runs * #*********************************************************************** 400000 = nevents -1.0 = req_acc ! Required accuracy (-1=auto determined from nevents) -1 = nevt_job! Max number of events per job in event generation. ! (-1= no split). #*********************************************************************** # Normalize the weights of LHE events such that they sum or average to * # the total cross section * #*********************************************************************** average = event_norm ! valid settings: average, sum, bias #*********************************************************************** # Number of points per itegration channel (ignored for aMC@NLO runs) * #*********************************************************************** 0.01 = req_acc_FO ! Required accuracy (-1=ignored, and use the ! number of points and iter. below) # These numbers are ignored except if req_acc_FO is equal to -1 5000 = npoints_FO_grid ! number of points to setup grids 4 = niters_FO_grid ! number of iter. to setup grids 10000 = npoints_FO ! number of points to compute Xsec 6 = niters_FO ! number of iter. to compute Xsec #*********************************************************************** # Random number seed * #*********************************************************************** 37 = iseed #*********************************************************************** # Collider type and energy * #*********************************************************************** 1 = lpp1 ! beam 1 type (0 = no PDF) 1 = lpp2 ! beam 2 type (0 = no PDF) 6500.0 = ebeam1 ! beam 1 energy in GeV 6500.0 = ebeam2 ! beam 2 energy in GeV #*********************************************************************** # PDF choice: this automatically fixes also alpha_s(MZ) and its evol. * #*********************************************************************** lhapdf = pdlabel ! PDF set 304200 = lhaid ! If pdlabel=lhapdf, this is the lhapdf number. Only ! numbers for central PDF sets are allowed. Can be a list; ! PDF sets beyond the first are included via reweighting. #*********************************************************************** # Include the NLO Monte Carlo subtr. terms for the following parton * # shower (HERWIG6 | HERWIGPP | PYTHIA6Q | PYTHIA6PT | PYTHIA8) * # WARNING: PYTHIA6PT works only for processes without FSR!!!! * #*********************************************************************** HERWIG6 = parton_shower 1.0 = shower_scale_factor ! multiply default shower starting ! scale by this factor #*********************************************************************** # Renormalization and factorization scales * # (Default functional form for the non-fixed scales is the sum of * # the transverse masses divided by two of all final state particles * # and partons. This can be changed in SubProcesses/set_scales.f or via * # dynamical_scale_choice option) * #*********************************************************************** False = fixed_ren_scale ! if .true. use fixed ren scale False = fixed_fac_scale ! if .true. use fixed fac scale 91.118 = muR_ref_fixed ! fixed ren reference scale 91.118 = muF_ref_fixed ! fixed fact reference scale -1 = dynamical_scale_choice ! Choose one (or more) of the predefined ! dynamical choices. Can be a list; scale choices beyond the ! first are included via reweighting 1.0 = muR_over_ref ! ratio of current muR over reference muR 1.0 = muF_over_ref ! ratio of current muF over reference muF #*********************************************************************** # Reweight variables for scale dependence and PDF uncertainty * #*********************************************************************** 1.0, 2.0, 0.5 = rw_rscale ! muR factors to be included by reweighting 1.0, 2.0, 0.5 = rw_fscale ! muF factors to be included by reweighting True = reweight_scale ! Reweight to get scale variation using the ! rw_rscale and rw_fscale factors. Should be a list of ! booleans of equal length to dynamical_scale_choice to ! specify for which choice to include scale dependence. True = reweight_PDF ! Reweight to get PDF uncertainty. Should be a ! list booleans of equal length to lhaid to specify for ! which PDF set to include the uncertainties. #*********************************************************************** # Store reweight information in the LHE file for off-line model- * # parameter reweighting at NLO+PS accuracy * #*********************************************************************** False = store_rwgt_info ! Store info for reweighting in LHE file #*********************************************************************** # ickkw parameter: * # 0: No merging * # 3: FxFx Merging - WARNING! Applies merging only at the hard-event * # level. After showering an MLM-type merging should be applied as * # well. See http://amcatnlo.cern.ch/FxFx_merging.htm for details. * # 4: UNLOPS merging (with pythia8 only). No interface from within * # MG5_aMC available, but available in Pythia8. * # -1: NNLL+NLO jet-veto computation. See arxiv:1412.8408 [hep-ph]. * #*********************************************************************** 0 = ickkw #*********************************************************************** # #*********************************************************************** # BW cutoff (M+/-bwcutoff*Gamma). Determines which resonances are * # written in the LHE event file * #*********************************************************************** 15.0 = bwcutoff #*********************************************************************** # Cuts on the jets. Jet clustering is performed by FastJet. * # - When matching to a parton shower, these generation cuts should be * # considerably softer than the analysis cuts. * # - More specific cuts can be specified in SubProcesses/cuts.f * #*********************************************************************** 1.0 = jetalgo ! FastJet jet algorithm (1=kT, 0=C/A, -1=anti-kT) 0.7 = jetradius ! The radius parameter for the jet algorithm 10.0 = ptj ! Min jet transverse momentum -1.0 = etaj ! Max jet abs(pseudo-rap) (a value .lt.0 means no cut) #*********************************************************************** # Cuts on the charged leptons (e+, e-, mu+, mu-, tau+ and tau-) * # More specific cuts can be specified in SubProcesses/cuts.f * #*********************************************************************** 0.0 = ptl ! Min lepton transverse momentum -1.0 = etal ! Max lepton abs(pseudo-rap) (a value .lt.0 means no cut) 0.0 = drll ! Min distance between opposite sign lepton pairs 0.0 = drll_sf ! Min distance between opp. sign same-flavor lepton pairs 0.0 = mll ! Min inv. mass of all opposite sign lepton pairs 30.0 = mll_sf ! Min inv. mass of all opp. sign same-flavor lepton pairs #*********************************************************************** # Photon-isolation cuts, according to hep-ph/9801442. When ptgmin=0, * # all the other parameters are ignored. * # More specific cuts can be specified in SubProcesses/cuts.f * #*********************************************************************** 20.0 = ptgmin ! Min photon transverse momentum -1.0 = etagamma ! Max photon abs(pseudo-rap) 0.4 = R0gamma ! Radius of isolation code 1.0 = xn ! n parameter of eq.(3.4) in hep-ph/9801442 1.0 = epsgamma ! epsilon_gamma parameter of eq.(3.4) in hep-ph/9801442 True = isoEM ! isolate photons from EM energy (photons and leptons) #*********************************************************************** # Cuts associated to MASSIVE particles identified by their PDG codes. * # All cuts are applied to both particles and anti-particles, so use * # POSITIVE PDG CODES only. Example of the syntax is {6 : 100} or * # {6:100, 25:200} for multiple particles * #*********************************************************************** {} = pt_min_pdg ! Min pT for a massive particle {} = pt_max_pdg ! Max pT for a massive particle {} = mxx_min_pdg ! inv. mass for any pair of (anti)particles #*********************************************************************** # For aMCfast+APPLGRID use in PDF fitting (http://amcfast.hepforge.org)* #*********************************************************************** 0 = iappl ! aMCfast switch (0=OFF, 1=prepare grids, 2=fill grids) #*********************************************************************** muR H_T/2 := sum_i mT(i)/2, i=final state muF1 H_T/2 := sum_i mT(i)/2, i=final state muF2 H_T/2 := sum_i mT(i)/2, i=final state QES H_T/2 := sum_i mT(i)/2, i=final state 1 0.320000E+00 2 0.320000E+00 3 0.500000E+00 4 0.155000E+01 5 0.495000E+01 11 0.510999E-03 13 0.105658E+00 15 0.177682E+01 21 0.750000E+00 dyn= -1 muR=0.10000E+01 muF=0.10000E+01 dyn= -1 muR=0.20000E+01 muF=0.10000E+01 dyn= -1 muR=0.50000E+00 muF=0.10000E+01 dyn= -1 muR=0.10000E+01 muF=0.20000E+01 dyn= -1 muR=0.20000E+01 muF=0.20000E+01 dyn= -1 muR=0.50000E+00 muF=0.20000E+01 dyn= -1 muR=0.10000E+01 muF=0.50000E+00 dyn= -1 muR=0.20000E+01 muF=0.50000E+00 dyn= -1 muR=0.50000E+00 muF=0.50000E+00 PDF= 304200 NNPDF31_nlo_as_0118_hessian PDF= 304201 NNPDF31_nlo_as_0118_hessian PDF= 304202 NNPDF31_nlo_as_0118_hessian PDF= 304203 NNPDF31_nlo_as_0118_hessian PDF= 304204 NNPDF31_nlo_as_0118_hessian PDF= 304205 NNPDF31_nlo_as_0118_hessian PDF= 304206 NNPDF31_nlo_as_0118_hessian PDF= 304207 NNPDF31_nlo_as_0118_hessian PDF= 304208 NNPDF31_nlo_as_0118_hessian PDF= 304209 NNPDF31_nlo_as_0118_hessian PDF= 304210 NNPDF31_nlo_as_0118_hessian PDF= 304211 NNPDF31_nlo_as_0118_hessian PDF= 304212 NNPDF31_nlo_as_0118_hessian PDF= 304213 NNPDF31_nlo_as_0118_hessian PDF= 304214 NNPDF31_nlo_as_0118_hessian PDF= 304215 NNPDF31_nlo_as_0118_hessian PDF= 304216 NNPDF31_nlo_as_0118_hessian PDF= 304217 NNPDF31_nlo_as_0118_hessian PDF= 304218 NNPDF31_nlo_as_0118_hessian PDF= 304219 NNPDF31_nlo_as_0118_hessian PDF= 304220 NNPDF31_nlo_as_0118_hessian PDF= 304221 NNPDF31_nlo_as_0118_hessian PDF= 304222 NNPDF31_nlo_as_0118_hessian PDF= 304223 NNPDF31_nlo_as_0118_hessian PDF= 304224 NNPDF31_nlo_as_0118_hessian PDF= 304225 NNPDF31_nlo_as_0118_hessian PDF= 304226 NNPDF31_nlo_as_0118_hessian PDF= 304227 NNPDF31_nlo_as_0118_hessian PDF= 304228 NNPDF31_nlo_as_0118_hessian PDF= 304229 NNPDF31_nlo_as_0118_hessian PDF= 304230 NNPDF31_nlo_as_0118_hessian PDF= 304231 NNPDF31_nlo_as_0118_hessian PDF= 304232 NNPDF31_nlo_as_0118_hessian PDF= 304233 NNPDF31_nlo_as_0118_hessian PDF= 304234 NNPDF31_nlo_as_0118_hessian PDF= 304235 NNPDF31_nlo_as_0118_hessian PDF= 304236 NNPDF31_nlo_as_0118_hessian PDF= 304237 NNPDF31_nlo_as_0118_hessian PDF= 304238 NNPDF31_nlo_as_0118_hessian PDF= 304239 NNPDF31_nlo_as_0118_hessian PDF= 304240 NNPDF31_nlo_as_0118_hessian PDF= 304241 NNPDF31_nlo_as_0118_hessian PDF= 304242 NNPDF31_nlo_as_0118_hessian PDF= 304243 NNPDF31_nlo_as_0118_hessian PDF= 304244 NNPDF31_nlo_as_0118_hessian PDF= 304245 NNPDF31_nlo_as_0118_hessian PDF= 304246 NNPDF31_nlo_as_0118_hessian PDF= 304247 NNPDF31_nlo_as_0118_hessian PDF= 304248 NNPDF31_nlo_as_0118_hessian PDF= 304249 NNPDF31_nlo_as_0118_hessian PDF= 304250 NNPDF31_nlo_as_0118_hessian PDF= 304251 NNPDF31_nlo_as_0118_hessian PDF= 304252 NNPDF31_nlo_as_0118_hessian PDF= 304253 NNPDF31_nlo_as_0118_hessian PDF= 304254 NNPDF31_nlo_as_0118_hessian PDF= 304255 NNPDF31_nlo_as_0118_hessian PDF= 304256 NNPDF31_nlo_as_0118_hessian PDF= 304257 NNPDF31_nlo_as_0118_hessian PDF= 304258 NNPDF31_nlo_as_0118_hessian PDF= 304259 NNPDF31_nlo_as_0118_hessian PDF= 304260 NNPDF31_nlo_as_0118_hessian PDF= 304261 NNPDF31_nlo_as_0118_hessian PDF= 304262 NNPDF31_nlo_as_0118_hessian PDF= 304263 NNPDF31_nlo_as_0118_hessian PDF= 304264 NNPDF31_nlo_as_0118_hessian PDF= 304265 NNPDF31_nlo_as_0118_hessian PDF= 304266 NNPDF31_nlo_as_0118_hessian PDF= 304267 NNPDF31_nlo_as_0118_hessian PDF= 304268 NNPDF31_nlo_as_0118_hessian PDF= 304269 NNPDF31_nlo_as_0118_hessian PDF= 304270 NNPDF31_nlo_as_0118_hessian PDF= 304271 NNPDF31_nlo_as_0118_hessian PDF= 304272 NNPDF31_nlo_as_0118_hessian PDF= 304273 NNPDF31_nlo_as_0118_hessian PDF= 304274 NNPDF31_nlo_as_0118_hessian PDF= 304275 NNPDF31_nlo_as_0118_hessian PDF= 304276 NNPDF31_nlo_as_0118_hessian PDF= 304277 NNPDF31_nlo_as_0118_hessian PDF= 304278 NNPDF31_nlo_as_0118_hessian PDF= 304279 NNPDF31_nlo_as_0118_hessian PDF= 304280 NNPDF31_nlo_as_0118_hessian PDF= 304281 NNPDF31_nlo_as_0118_hessian PDF= 304282 NNPDF31_nlo_as_0118_hessian PDF= 304283 NNPDF31_nlo_as_0118_hessian PDF= 304284 NNPDF31_nlo_as_0118_hessian PDF= 304285 NNPDF31_nlo_as_0118_hessian PDF= 304286 NNPDF31_nlo_as_0118_hessian PDF= 304287 NNPDF31_nlo_as_0118_hessian PDF= 304288 NNPDF31_nlo_as_0118_hessian PDF= 304289 NNPDF31_nlo_as_0118_hessian PDF= 304290 NNPDF31_nlo_as_0118_hessian PDF= 304291 NNPDF31_nlo_as_0118_hessian PDF= 304292 NNPDF31_nlo_as_0118_hessian PDF= 304293 NNPDF31_nlo_as_0118_hessian PDF= 304294 NNPDF31_nlo_as_0118_hessian PDF= 304295 NNPDF31_nlo_as_0118_hessian PDF= 304296 NNPDF31_nlo_as_0118_hessian PDF= 304297 NNPDF31_nlo_as_0118_hessian PDF= 304298 NNPDF31_nlo_as_0118_hessian PDF= 304299 NNPDF31_nlo_as_0118_hessian PDF= 304300 NNPDF31_nlo_as_0118_hessian
#************************************************************ #* MadGraph5_aMC@NLO * #* * #* * * * #* * * * * * #* * * * * 5 * * * * * #* * * * * * #* * * * #* * #* * #* VERSION 2.7.3 2020-06-21 * #* * #* The MadGraph5_aMC@NLO Development Team - Find us at * #* https://server06.fynu.ucl.ac.be/projects/madgraph * #* * #************************************************************ #* * #* Command File for MadGraph5_aMC@NLO * #* * #* run as ./bin/mg5_aMC filename * #* * #************************************************************ set default_unset_couplings 99 set group_subprocesses Auto set ignore_six_quark_processes False set loop_optimized_output True set loop_color_flows False set gauge unitary set complex_mass_scheme False set max_npoint_for_channel 0 import model sm define p = g u c d s u~ c~ d~ s~ define j = g u c d s u~ c~ d~ s~ define l+ = e+ mu+ define l- = e- mu- define vl = ve vm vt define vl~ = ve~ vm~ vt~ import model HC_NLO_X0_UFO-heft define p = 21 2 4 1 3 -2 -4 -1 -3 5 -5 # pass to 5 flavors define j = p generate p p > x0 [QCD] output ggh_NLO ###################################################################### ## Process generated with '-heft' model restrictions ## ## 5F scheme (MB=0) ## ## GLUON FUSION AT NLO using the Higgs Effective Field Theory ## ## (i.e. in the limit Mtop->infinity) ## ## ## ## These restrictions should be used only to generate ## ## X0 (plus jets) in the gluon fusion channel ## ## ## ## NB: ## ## Please be sure that before generating this process, ## ## you have correctly set the content of the multiparticles ## ## 'p' (proton) and 'j' (jet) inside MG5_aMC, ## ## accordingly to the massless flavour scheme ## ## 5F: p, j = g d d~ u u~ s s~ c c~ b b~ ## ## ## ## Please be sure that you have filtered out all the top quark ## ## loops using '/ t' in the generation command ## ###################################################################### ################################### ## INFORMATION FOR FRBLOCK ################################### Block frblock 1 1.000000e+03 # Lambda 2 1.000000e+00 # cosa 3 1.000000e+00 # kSM 8 1.000000e+00 # kHll 9 1.000000e+00 # kAll 10 1.000000e+00 # kHaa 11 1.000000e+00 # kAaa 12 1.000000e+00 # kHza 13 1.000000e+00 # kAza 14 1.000000e+00 # kHgg 15 1.000000e+00 # kAgg 16 0.000000e+00 # kHzz 17 0.000000e+00 # kAzz 18 0.000000e+00 # kHww 19 0.000000e+00 # kAww 20 0.000000e+00 # kHda 21 0.000000e+00 # kHdz 22 0.000000e+00 # kHdwR (real part of kHdw) 23 0.000000e+00 # kHdwI (imaginary part of kHdw) ################################### ### INFORMATION FOR LOOP #################################### Block loop 1 9.118800e+01 # MU_R ################################### ## INFORMATION FOR SMINPUTS ################################### Block SMINPUTS 1 1.325070e+02 # aEWM1 2 1.166390e-05 # Gf 3 1.180000e-01 # aS ################################### ## INFORMATION FOR MASS ################################### Block MASS 6 1.730000e+02 # MT 15 1.777000e+00 # MTA 23 9.118800e+01 # MZ 25 1.250000e+02 # MX0 ## Dependent parameters, given by model restrictions. ## Those values should be edited following the ## analytical expression. MG5 ignores those values ## but they are important for interfacing the output of MG5 ## to external program such as Pythia. 1 0.000000 # d : 0.0 2 0.000000 # u : 0.0 3 0.000000 # s : 0.0 4 0.000000 # c : 0.0 5 0.000000 # b : 0.0 11 0.000000 # e- : 0.0 12 0.000000 # ve : 0.0 13 0.000000 # mu- : 0.0 14 0.000000 # vm : 0.0 16 0.000000 # vt : 0.0 21 0.000000 # g : 0.0 22 0.000000 # a : 0.0 24 80.419002 # w+ : cmath.sqrt(MZ__exp__2/2. + cmath.sqrt(MZ__exp__4/4. - (aEW*cmath.pi*MZ__exp__2)/(Gf*sqrt__2))) 82 0.000000 # gh : 0.0 ################################### ## INFORMATION FOR YUKAWA ################################### Block YUKAWA 15 1.777000e+00 # ymtau ################################### ## INFORMATION FOR DECAY ################################### DECAY 6 1.491500e+00 # top width DECAY 23 2.441404e+00 # Z width DECAY 24 2.047600e+00 # W width DECAY 25 4.070000e-03 # X0 width ## Dependent parameters, given by model restrictions. ## Those values should be edited following the ## analytical expression. MG5 ignores those values ## but they are important for interfacing the output of MG5 ## to external program such as Pythia. DECAY 1 0.000000 # d : 0.0 DECAY 2 0.000000 # u : 0.0 DECAY 3 0.000000 # s : 0.0 DECAY 4 0.000000 # c : 0.0 DECAY 5 0.000000 # b : 0.0 DECAY 11 0.000000 # e- : 0.0 DECAY 12 0.000000 # ve : 0.0 DECAY 13 0.000000 # mu- : 0.0 DECAY 14 0.000000 # vm : 0.0 DECAY 15 0.000000 # ta- : 0.0 DECAY 16 0.000000 # vt : 0.0 DECAY 21 0.000000 # g : 0.0 DECAY 22 0.000000 # a : 0.0 DECAY 82 0.000000 # gh : 0.0 #=========================================================== # QUANTUM NUMBERS OF NEW STATE(S) (NON SM PDG CODE) #=========================================================== Block QNUMBERS 82 # gh 1 0 # 3 times electric charge 2 1 # number of spin states (2S+1) 3 8 # colour rep (1: singlet, 3: triplet, 8: octet) 4 1 # Particle/Antiparticle distinction (0=own anti) #*********************************************************************** # MadGraph5_aMC@NLO * # * # run_card.dat aMC@NLO * # * # This file is used to set the parameters of the run. * # * # Some notation/conventions: * # * # Lines starting with a hash (#) are info or comments * # * # mind the format: value = variable ! comment * # * # Some of the values of variables can be list. These can either be * # comma or space separated. * # * # To display additional parameter, you can use the command: * # update to_full * #*********************************************************************** # #******************* # Running parameters #******************* # #*********************************************************************** # Tag name for the run (one word) * #*********************************************************************** tag_1 = run_tag ! name of the run #*********************************************************************** # Number of LHE events (and their normalization) and the required * # (relative) accuracy on the Xsec. * # These values are ignored for fixed order runs * #*********************************************************************** 400000 = nevents -1.0 = req_acc ! Required accuracy (-1=auto determined from nevents) -1 = nevt_job! Max number of events per job in event generation. ! (-1= no split). #*********************************************************************** # Normalize the weights of LHE events such that they sum or average to * # the total cross section * #*********************************************************************** average = event_norm ! valid settings: average, sum, bias #*********************************************************************** # Number of points per itegration channel (ignored for aMC@NLO runs) * #*********************************************************************** 0.01 = req_acc_FO ! Required accuracy (-1=ignored, and use the ! number of points and iter. below) # These numbers are ignored except if req_acc_FO is equal to -1 5000 = npoints_FO_grid ! number of points to setup grids 4 = niters_FO_grid ! number of iter. to setup grids 10000 = npoints_FO ! number of points to compute Xsec 6 = niters_FO ! number of iter. to compute Xsec #*********************************************************************** # Random number seed * #*********************************************************************** 37 = iseed #*********************************************************************** # Collider type and energy * #*********************************************************************** 1 = lpp1 ! beam 1 type (0 = no PDF) 1 = lpp2 ! beam 2 type (0 = no PDF) 6500.0 = ebeam1 ! beam 1 energy in GeV 6500.0 = ebeam2 ! beam 2 energy in GeV #*********************************************************************** # PDF choice: this automatically fixes also alpha_s(MZ) and its evol. * #*********************************************************************** lhapdf = pdlabel ! PDF set 304200 = lhaid ! If pdlabel=lhapdf, this is the lhapdf number. Only ! numbers for central PDF sets are allowed. Can be a list; ! PDF sets beyond the first are included via reweighting. #*********************************************************************** # Include the NLO Monte Carlo subtr. terms for the following parton * # shower (HERWIG6 | HERWIGPP | PYTHIA6Q | PYTHIA6PT | PYTHIA8) * # WARNING: PYTHIA6PT works only for processes without FSR!!!! * #*********************************************************************** HERWIG6 = parton_shower 1.0 = shower_scale_factor ! multiply default shower starting ! scale by this factor #*********************************************************************** # Renormalization and factorization scales * # (Default functional form for the non-fixed scales is the sum of * # the transverse masses divided by two of all final state particles * # and partons. This can be changed in SubProcesses/set_scales.f or via * # dynamical_scale_choice option) * #*********************************************************************** False = fixed_ren_scale ! if .true. use fixed ren scale False = fixed_fac_scale ! if .true. use fixed fac scale 91.118 = muR_ref_fixed ! fixed ren reference scale 91.118 = muF_ref_fixed ! fixed fact reference scale -1 = dynamical_scale_choice ! Choose one (or more) of the predefined ! dynamical choices. Can be a list; scale choices beyond the ! first are included via reweighting 1.0 = muR_over_ref ! ratio of current muR over reference muR 1.0 = muF_over_ref ! ratio of current muF over reference muF #*********************************************************************** # Reweight variables for scale dependence and PDF uncertainty * #*********************************************************************** 1.0, 2.0, 0.5 = rw_rscale ! muR factors to be included by reweighting 1.0, 2.0, 0.5 = rw_fscale ! muF factors to be included by reweighting True = reweight_scale ! Reweight to get scale variation using the ! rw_rscale and rw_fscale factors. Should be a list of ! booleans of equal length to dynamical_scale_choice to ! specify for which choice to include scale dependence. True = reweight_PDF ! Reweight to get PDF uncertainty. Should be a ! list booleans of equal length to lhaid to specify for ! which PDF set to include the uncertainties. #*********************************************************************** # Store reweight information in the LHE file for off-line model- * # parameter reweighting at NLO+PS accuracy * #*********************************************************************** False = store_rwgt_info ! Store info for reweighting in LHE file #*********************************************************************** # ickkw parameter: * # 0: No merging * # 3: FxFx Merging - WARNING! Applies merging only at the hard-event * # level. After showering an MLM-type merging should be applied as * # well. See http://amcatnlo.cern.ch/FxFx_merging.htm for details. * # 4: UNLOPS merging (with pythia8 only). No interface from within * # MG5_aMC available, but available in Pythia8. * # -1: NNLL+NLO jet-veto computation. See arxiv:1412.8408 [hep-ph]. * #*********************************************************************** 0 = ickkw #*********************************************************************** # #*********************************************************************** # BW cutoff (M+/-bwcutoff*Gamma). Determines which resonances are * # written in the LHE event file * #*********************************************************************** 15.0 = bwcutoff #*********************************************************************** # Cuts on the jets. Jet clustering is performed by FastJet. * # - When matching to a parton shower, these generation cuts should be * # considerably softer than the analysis cuts. * # - More specific cuts can be specified in SubProcesses/cuts.f * #*********************************************************************** 1.0 = jetalgo ! FastJet jet algorithm (1=kT, 0=C/A, -1=anti-kT) 0.7 = jetradius ! The radius parameter for the jet algorithm 10.0 = ptj ! Min jet transverse momentum -1.0 = etaj ! Max jet abs(pseudo-rap) (a value .lt.0 means no cut) #*********************************************************************** # Cuts on the charged leptons (e+, e-, mu+, mu-, tau+ and tau-) * # More specific cuts can be specified in SubProcesses/cuts.f * #*********************************************************************** 0.0 = ptl ! Min lepton transverse momentum -1.0 = etal ! Max lepton abs(pseudo-rap) (a value .lt.0 means no cut) 0.0 = drll ! Min distance between opposite sign lepton pairs 0.0 = drll_sf ! Min distance between opp. sign same-flavor lepton pairs 0.0 = mll ! Min inv. mass of all opposite sign lepton pairs 30.0 = mll_sf ! Min inv. mass of all opp. sign same-flavor lepton pairs #*********************************************************************** # Photon-isolation cuts, according to hep-ph/9801442. When ptgmin=0, * # all the other parameters are ignored. * # More specific cuts can be specified in SubProcesses/cuts.f * #*********************************************************************** 20.0 = ptgmin ! Min photon transverse momentum -1.0 = etagamma ! Max photon abs(pseudo-rap) 0.4 = R0gamma ! Radius of isolation code 1.0 = xn ! n parameter of eq.(3.4) in hep-ph/9801442 1.0 = epsgamma ! epsilon_gamma parameter of eq.(3.4) in hep-ph/9801442 True = isoEM ! isolate photons from EM energy (photons and leptons) #*********************************************************************** # Cuts associated to MASSIVE particles identified by their PDG codes. * # All cuts are applied to both particles and anti-particles, so use * # POSITIVE PDG CODES only. Example of the syntax is {6 : 100} or * # {6:100, 25:200} for multiple particles * #*********************************************************************** {} = pt_min_pdg ! Min pT for a massive particle {} = pt_max_pdg ! Max pT for a massive particle {} = mxx_min_pdg ! inv. mass for any pair of (anti)particles #*********************************************************************** # For aMCfast+APPLGRID use in PDF fitting (http://amcfast.hepforge.org)* #*********************************************************************** 0 = iappl ! aMCfast switch (0=OFF, 1=prepare grids, 2=fill grids) #*********************************************************************** muR H_T/2 := sum_i mT(i)/2, i=final state muF1 H_T/2 := sum_i mT(i)/2, i=final state muF2 H_T/2 := sum_i mT(i)/2, i=final state QES H_T/2 := sum_i mT(i)/2, i=final state 1 0.320000E+00 2 0.320000E+00 3 0.500000E+00 4 0.155000E+01 5 0.495000E+01 11 0.510999E-03 13 0.105658E+00 15 0.177682E+01 21 0.750000E+00 dyn= -1 muR=0.10000E+01 muF=0.10000E+01 dyn= -1 muR=0.20000E+01 muF=0.10000E+01 dyn= -1 muR=0.50000E+00 muF=0.10000E+01 dyn= -1 muR=0.10000E+01 muF=0.20000E+01 dyn= -1 muR=0.20000E+01 muF=0.20000E+01 dyn= -1 muR=0.50000E+00 muF=0.20000E+01 dyn= -1 muR=0.10000E+01 muF=0.50000E+00 dyn= -1 muR=0.20000E+01 muF=0.50000E+00 dyn= -1 muR=0.50000E+00 muF=0.50000E+00 PDF= 304200 NNPDF31_nlo_as_0118_hessian PDF= 304201 NNPDF31_nlo_as_0118_hessian PDF= 304202 NNPDF31_nlo_as_0118_hessian PDF= 304203 NNPDF31_nlo_as_0118_hessian PDF= 304204 NNPDF31_nlo_as_0118_hessian PDF= 304205 NNPDF31_nlo_as_0118_hessian PDF= 304206 NNPDF31_nlo_as_0118_hessian PDF= 304207 NNPDF31_nlo_as_0118_hessian PDF= 304208 NNPDF31_nlo_as_0118_hessian PDF= 304209 NNPDF31_nlo_as_0118_hessian PDF= 304210 NNPDF31_nlo_as_0118_hessian PDF= 304211 NNPDF31_nlo_as_0118_hessian PDF= 304212 NNPDF31_nlo_as_0118_hessian PDF= 304213 NNPDF31_nlo_as_0118_hessian PDF= 304214 NNPDF31_nlo_as_0118_hessian PDF= 304215 NNPDF31_nlo_as_0118_hessian PDF= 304216 NNPDF31_nlo_as_0118_hessian PDF= 304217 NNPDF31_nlo_as_0118_hessian PDF= 304218 NNPDF31_nlo_as_0118_hessian PDF= 304219 NNPDF31_nlo_as_0118_hessian PDF= 304220 NNPDF31_nlo_as_0118_hessian PDF= 304221 NNPDF31_nlo_as_0118_hessian PDF= 304222 NNPDF31_nlo_as_0118_hessian PDF= 304223 NNPDF31_nlo_as_0118_hessian PDF= 304224 NNPDF31_nlo_as_0118_hessian PDF= 304225 NNPDF31_nlo_as_0118_hessian PDF= 304226 NNPDF31_nlo_as_0118_hessian PDF= 304227 NNPDF31_nlo_as_0118_hessian PDF= 304228 NNPDF31_nlo_as_0118_hessian PDF= 304229 NNPDF31_nlo_as_0118_hessian PDF= 304230 NNPDF31_nlo_as_0118_hessian PDF= 304231 NNPDF31_nlo_as_0118_hessian PDF= 304232 NNPDF31_nlo_as_0118_hessian PDF= 304233 NNPDF31_nlo_as_0118_hessian PDF= 304234 NNPDF31_nlo_as_0118_hessian PDF= 304235 NNPDF31_nlo_as_0118_hessian PDF= 304236 NNPDF31_nlo_as_0118_hessian PDF= 304237 NNPDF31_nlo_as_0118_hessian PDF= 304238 NNPDF31_nlo_as_0118_hessian PDF= 304239 NNPDF31_nlo_as_0118_hessian PDF= 304240 NNPDF31_nlo_as_0118_hessian PDF= 304241 NNPDF31_nlo_as_0118_hessian PDF= 304242 NNPDF31_nlo_as_0118_hessian PDF= 304243 NNPDF31_nlo_as_0118_hessian PDF= 304244 NNPDF31_nlo_as_0118_hessian PDF= 304245 NNPDF31_nlo_as_0118_hessian PDF= 304246 NNPDF31_nlo_as_0118_hessian PDF= 304247 NNPDF31_nlo_as_0118_hessian PDF= 304248 NNPDF31_nlo_as_0118_hessian PDF= 304249 NNPDF31_nlo_as_0118_hessian PDF= 304250 NNPDF31_nlo_as_0118_hessian PDF= 304251 NNPDF31_nlo_as_0118_hessian PDF= 304252 NNPDF31_nlo_as_0118_hessian PDF= 304253 NNPDF31_nlo_as_0118_hessian PDF= 304254 NNPDF31_nlo_as_0118_hessian PDF= 304255 NNPDF31_nlo_as_0118_hessian PDF= 304256 NNPDF31_nlo_as_0118_hessian PDF= 304257 NNPDF31_nlo_as_0118_hessian PDF= 304258 NNPDF31_nlo_as_0118_hessian PDF= 304259 NNPDF31_nlo_as_0118_hessian PDF= 304260 NNPDF31_nlo_as_0118_hessian PDF= 304261 NNPDF31_nlo_as_0118_hessian PDF= 304262 NNPDF31_nlo_as_0118_hessian PDF= 304263 NNPDF31_nlo_as_0118_hessian PDF= 304264 NNPDF31_nlo_as_0118_hessian PDF= 304265 NNPDF31_nlo_as_0118_hessian PDF= 304266 NNPDF31_nlo_as_0118_hessian PDF= 304267 NNPDF31_nlo_as_0118_hessian PDF= 304268 NNPDF31_nlo_as_0118_hessian PDF= 304269 NNPDF31_nlo_as_0118_hessian PDF= 304270 NNPDF31_nlo_as_0118_hessian PDF= 304271 NNPDF31_nlo_as_0118_hessian PDF= 304272 NNPDF31_nlo_as_0118_hessian PDF= 304273 NNPDF31_nlo_as_0118_hessian PDF= 304274 NNPDF31_nlo_as_0118_hessian PDF= 304275 NNPDF31_nlo_as_0118_hessian PDF= 304276 NNPDF31_nlo_as_0118_hessian PDF= 304277 NNPDF31_nlo_as_0118_hessian PDF= 304278 NNPDF31_nlo_as_0118_hessian PDF= 304279 NNPDF31_nlo_as_0118_hessian PDF= 304280 NNPDF31_nlo_as_0118_hessian PDF= 304281 NNPDF31_nlo_as_0118_hessian PDF= 304282 NNPDF31_nlo_as_0118_hessian PDF= 304283 NNPDF31_nlo_as_0118_hessian PDF= 304284 NNPDF31_nlo_as_0118_hessian PDF= 304285 NNPDF31_nlo_as_0118_hessian PDF= 304286 NNPDF31_nlo_as_0118_hessian PDF= 304287 NNPDF31_nlo_as_0118_hessian PDF= 304288 NNPDF31_nlo_as_0118_hessian PDF= 304289 NNPDF31_nlo_as_0118_hessian PDF= 304290 NNPDF31_nlo_as_0118_hessian PDF= 304291 NNPDF31_nlo_as_0118_hessian PDF= 304292 NNPDF31_nlo_as_0118_hessian PDF= 304293 NNPDF31_nlo_as_0118_hessian PDF= 304294 NNPDF31_nlo_as_0118_hessian PDF= 304295 NNPDF31_nlo_as_0118_hessian PDF= 304296 NNPDF31_nlo_as_0118_hessian PDF= 304297 NNPDF31_nlo_as_0118_hessian PDF= 304298 NNPDF31_nlo_as_0118_hessian PDF= 304299 NNPDF31_nlo_as_0118_hessian PDF= 304300 NNPDF31_nlo_as_0118_hessian
#************************************************************ #* MadGraph5_aMC@NLO * #* * #* * * * #* * * * * * #* * * * * 5 * * * * * #* * * * * * #* * * * #* * #* * #* VERSION 2.7.3 2020-06-21 * #* * #* The MadGraph5_aMC@NLO Development Team - Find us at * #* https://server06.fynu.ucl.ac.be/projects/madgraph * #* * #************************************************************ #* * #* Command File for MadGraph5_aMC@NLO * #* * #* run as ./bin/mg5_aMC filename * #* * #************************************************************ set default_unset_couplings 99 set group_subprocesses Auto set ignore_six_quark_processes False set loop_optimized_output True set loop_color_flows False set gauge unitary set complex_mass_scheme False set max_npoint_for_channel 0 import model sm define p = g u c d s u~ c~ d~ s~ define j = g u c d s u~ c~ d~ s~ define l+ = e+ mu+ define l- = e- mu- define vl = ve vm vt define vl~ = ve~ vm~ vt~ import model HC_NLO_X0_UFO-heft define p = 21 2 4 1 3 -2 -4 -1 -3 5 -5 # pass to 5 flavors define j = p generate p p > x0 [QCD] output ggh_NLO ###################################################################### ## Process generated with '-heft' model restrictions ## ## 5F scheme (MB=0) ## ## GLUON FUSION AT NLO using the Higgs Effective Field Theory ## ## (i.e. in the limit Mtop->infinity) ## ## ## ## These restrictions should be used only to generate ## ## X0 (plus jets) in the gluon fusion channel ## ## ## ## NB: ## ## Please be sure that before generating this process, ## ## you have correctly set the content of the multiparticles ## ## 'p' (proton) and 'j' (jet) inside MG5_aMC, ## ## accordingly to the massless flavour scheme ## ## 5F: p, j = g d d~ u u~ s s~ c c~ b b~ ## ## ## ## Please be sure that you have filtered out all the top quark ## ## loops using '/ t' in the generation command ## ###################################################################### ################################### ## INFORMATION FOR FRBLOCK ################################### Block frblock 1 1.000000e+03 # Lambda 2 1.000000e+00 # cosa 3 1.000000e+00 # kSM 8 1.000000e+00 # kHll 9 1.000000e+00 # kAll 10 1.000000e+00 # kHaa 11 1.000000e+00 # kAaa 12 1.000000e+00 # kHza 13 1.000000e+00 # kAza 14 1.000000e+00 # kHgg 15 1.000000e+00 # kAgg 16 0.000000e+00 # kHzz 17 0.000000e+00 # kAzz 18 0.000000e+00 # kHww 19 0.000000e+00 # kAww 20 0.000000e+00 # kHda 21 0.000000e+00 # kHdz 22 0.000000e+00 # kHdwR (real part of kHdw) 23 0.000000e+00 # kHdwI (imaginary part of kHdw) ################################### ### INFORMATION FOR LOOP #################################### Block loop 1 9.118800e+01 # MU_R ################################### ## INFORMATION FOR SMINPUTS ################################### Block SMINPUTS 1 1.325070e+02 # aEWM1 2 1.166390e-05 # Gf 3 1.180000e-01 # aS ################################### ## INFORMATION FOR MASS ################################### Block MASS 6 1.730000e+02 # MT 15 1.777000e+00 # MTA 23 9.118800e+01 # MZ 25 1.250000e+02 # MX0 ## Dependent parameters, given by model restrictions. ## Those values should be edited following the ## analytical expression. MG5 ignores those values ## but they are important for interfacing the output of MG5 ## to external program such as Pythia. 1 0.000000 # d : 0.0 2 0.000000 # u : 0.0 3 0.000000 # s : 0.0 4 0.000000 # c : 0.0 5 0.000000 # b : 0.0 11 0.000000 # e- : 0.0 12 0.000000 # ve : 0.0 13 0.000000 # mu- : 0.0 14 0.000000 # vm : 0.0 16 0.000000 # vt : 0.0 21 0.000000 # g : 0.0 22 0.000000 # a : 0.0 24 80.419002 # w+ : cmath.sqrt(MZ__exp__2/2. + cmath.sqrt(MZ__exp__4/4. - (aEW*cmath.pi*MZ__exp__2)/(Gf*sqrt__2))) 82 0.000000 # gh : 0.0 ################################### ## INFORMATION FOR YUKAWA ################################### Block YUKAWA 15 1.777000e+00 # ymtau ################################### ## INFORMATION FOR DECAY ################################### DECAY 6 1.491500e+00 # top width DECAY 23 2.441404e+00 # Z width DECAY 24 2.047600e+00 # W width DECAY 25 4.070000e-03 # X0 width ## Dependent parameters, given by model restrictions. ## Those values should be edited following the ## analytical expression. MG5 ignores those values ## but they are important for interfacing the output of MG5 ## to external program such as Pythia. DECAY 1 0.000000 # d : 0.0 DECAY 2 0.000000 # u : 0.0 DECAY 3 0.000000 # s : 0.0 DECAY 4 0.000000 # c : 0.0 DECAY 5 0.000000 # b : 0.0 DECAY 11 0.000000 # e- : 0.0 DECAY 12 0.000000 # ve : 0.0 DECAY 13 0.000000 # mu- : 0.0 DECAY 14 0.000000 # vm : 0.0 DECAY 15 0.000000 # ta- : 0.0 DECAY 16 0.000000 # vt : 0.0 DECAY 21 0.000000 # g : 0.0 DECAY 22 0.000000 # a : 0.0 DECAY 82 0.000000 # gh : 0.0 #=========================================================== # QUANTUM NUMBERS OF NEW STATE(S) (NON SM PDG CODE) #=========================================================== Block QNUMBERS 82 # gh 1 0 # 3 times electric charge 2 1 # number of spin states (2S+1) 3 8 # colour rep (1: singlet, 3: triplet, 8: octet) 4 1 # Particle/Antiparticle distinction (0=own anti) #*********************************************************************** # MadGraph5_aMC@NLO * # * # run_card.dat aMC@NLO * # * # This file is used to set the parameters of the run. * # * # Some notation/conventions: * # * # Lines starting with a hash (#) are info or comments * # * # mind the format: value = variable ! comment * # * # Some of the values of variables can be list. These can either be * # comma or space separated. * # * # To display additional parameter, you can use the command: * # update to_full * #*********************************************************************** # #******************* # Running parameters #******************* # #*********************************************************************** # Tag name for the run (one word) * #*********************************************************************** tag_1 = run_tag ! name of the run #*********************************************************************** # Number of LHE events (and their normalization) and the required * # (relative) accuracy on the Xsec. * # These values are ignored for fixed order runs * #*********************************************************************** 400000 = nevents -1.0 = req_acc ! Required accuracy (-1=auto determined from nevents) -1 = nevt_job! Max number of events per job in event generation. ! (-1= no split). #*********************************************************************** # Normalize the weights of LHE events such that they sum or average to * # the total cross section * #*********************************************************************** average = event_norm ! valid settings: average, sum, bias #*********************************************************************** # Number of points per itegration channel (ignored for aMC@NLO runs) * #*********************************************************************** 0.01 = req_acc_FO ! Required accuracy (-1=ignored, and use the ! number of points and iter. below) # These numbers are ignored except if req_acc_FO is equal to -1 5000 = npoints_FO_grid ! number of points to setup grids 4 = niters_FO_grid ! number of iter. to setup grids 10000 = npoints_FO ! number of points to compute Xsec 6 = niters_FO ! number of iter. to compute Xsec #*********************************************************************** # Random number seed * #*********************************************************************** 37 = iseed #*********************************************************************** # Collider type and energy * #*********************************************************************** 1 = lpp1 ! beam 1 type (0 = no PDF) 1 = lpp2 ! beam 2 type (0 = no PDF) 6500.0 = ebeam1 ! beam 1 energy in GeV 6500.0 = ebeam2 ! beam 2 energy in GeV #*********************************************************************** # PDF choice: this automatically fixes also alpha_s(MZ) and its evol. * #*********************************************************************** lhapdf = pdlabel ! PDF set 304200 = lhaid ! If pdlabel=lhapdf, this is the lhapdf number. Only ! numbers for central PDF sets are allowed. Can be a list; ! PDF sets beyond the first are included via reweighting. #*********************************************************************** # Include the NLO Monte Carlo subtr. terms for the following parton * # shower (HERWIG6 | HERWIGPP | PYTHIA6Q | PYTHIA6PT | PYTHIA8) * # WARNING: PYTHIA6PT works only for processes without FSR!!!! * #*********************************************************************** HERWIG6 = parton_shower 1.0 = shower_scale_factor ! multiply default shower starting ! scale by this factor #*********************************************************************** # Renormalization and factorization scales * # (Default functional form for the non-fixed scales is the sum of * # the transverse masses divided by two of all final state particles * # and partons. This can be changed in SubProcesses/set_scales.f or via * # dynamical_scale_choice option) * #*********************************************************************** False = fixed_ren_scale ! if .true. use fixed ren scale False = fixed_fac_scale ! if .true. use fixed fac scale 91.118 = muR_ref_fixed ! fixed ren reference scale 91.118 = muF_ref_fixed ! fixed fact reference scale -1 = dynamical_scale_choice ! Choose one (or more) of the predefined ! dynamical choices. Can be a list; scale choices beyond the ! first are included via reweighting 1.0 = muR_over_ref ! ratio of current muR over reference muR 1.0 = muF_over_ref ! ratio of current muF over reference muF #*********************************************************************** # Reweight variables for scale dependence and PDF uncertainty * #*********************************************************************** 1.0, 2.0, 0.5 = rw_rscale ! muR factors to be included by reweighting 1.0, 2.0, 0.5 = rw_fscale ! muF factors to be included by reweighting True = reweight_scale ! Reweight to get scale variation using the ! rw_rscale and rw_fscale factors. Should be a list of ! booleans of equal length to dynamical_scale_choice to ! specify for which choice to include scale dependence. True = reweight_PDF ! Reweight to get PDF uncertainty. Should be a ! list booleans of equal length to lhaid to specify for ! which PDF set to include the uncertainties. #*********************************************************************** # Store reweight information in the LHE file for off-line model- * # parameter reweighting at NLO+PS accuracy * #*********************************************************************** False = store_rwgt_info ! Store info for reweighting in LHE file #*********************************************************************** # ickkw parameter: * # 0: No merging * # 3: FxFx Merging - WARNING! Applies merging only at the hard-event * # level. After showering an MLM-type merging should be applied as * # well. See http://amcatnlo.cern.ch/FxFx_merging.htm for details. * # 4: UNLOPS merging (with pythia8 only). No interface from within * # MG5_aMC available, but available in Pythia8. * # -1: NNLL+NLO jet-veto computation. See arxiv:1412.8408 [hep-ph]. * #*********************************************************************** 0 = ickkw #*********************************************************************** # #*********************************************************************** # BW cutoff (M+/-bwcutoff*Gamma). Determines which resonances are * # written in the LHE event file * #*********************************************************************** 15.0 = bwcutoff #*********************************************************************** # Cuts on the jets. Jet clustering is performed by FastJet. * # - When matching to a parton shower, these generation cuts should be * # considerably softer than the analysis cuts. * # - More specific cuts can be specified in SubProcesses/cuts.f * #*********************************************************************** 1.0 = jetalgo ! FastJet jet algorithm (1=kT, 0=C/A, -1=anti-kT) 0.7 = jetradius ! The radius parameter for the jet algorithm 10.0 = ptj ! Min jet transverse momentum -1.0 = etaj ! Max jet abs(pseudo-rap) (a value .lt.0 means no cut) #*********************************************************************** # Cuts on the charged leptons (e+, e-, mu+, mu-, tau+ and tau-) * # More specific cuts can be specified in SubProcesses/cuts.f * #*********************************************************************** 0.0 = ptl ! Min lepton transverse momentum -1.0 = etal ! Max lepton abs(pseudo-rap) (a value .lt.0 means no cut) 0.0 = drll ! Min distance between opposite sign lepton pairs 0.0 = drll_sf ! Min distance between opp. sign same-flavor lepton pairs 0.0 = mll ! Min inv. mass of all opposite sign lepton pairs 30.0 = mll_sf ! Min inv. mass of all opp. sign same-flavor lepton pairs #*********************************************************************** # Photon-isolation cuts, according to hep-ph/9801442. When ptgmin=0, * # all the other parameters are ignored. * # More specific cuts can be specified in SubProcesses/cuts.f * #*********************************************************************** 20.0 = ptgmin ! Min photon transverse momentum -1.0 = etagamma ! Max photon abs(pseudo-rap) 0.4 = R0gamma ! Radius of isolation code 1.0 = xn ! n parameter of eq.(3.4) in hep-ph/9801442 1.0 = epsgamma ! epsilon_gamma parameter of eq.(3.4) in hep-ph/9801442 True = isoEM ! isolate photons from EM energy (photons and leptons) #*********************************************************************** # Cuts associated to MASSIVE particles identified by their PDG codes. * # All cuts are applied to both particles and anti-particles, so use * # POSITIVE PDG CODES only. Example of the syntax is {6 : 100} or * # {6:100, 25:200} for multiple particles * #*********************************************************************** {} = pt_min_pdg ! Min pT for a massive particle {} = pt_max_pdg ! Max pT for a massive particle {} = mxx_min_pdg ! inv. mass for any pair of (anti)particles #*********************************************************************** # For aMCfast+APPLGRID use in PDF fitting (http://amcfast.hepforge.org)* #*********************************************************************** 0 = iappl ! aMCfast switch (0=OFF, 1=prepare grids, 2=fill grids) #*********************************************************************** muR H_T/2 := sum_i mT(i)/2, i=final state muF1 H_T/2 := sum_i mT(i)/2, i=final state muF2 H_T/2 := sum_i mT(i)/2, i=final state QES H_T/2 := sum_i mT(i)/2, i=final state 1 0.320000E+00 2 0.320000E+00 3 0.500000E+00 4 0.155000E+01 5 0.495000E+01 11 0.510999E-03 13 0.105658E+00 15 0.177682E+01 21 0.750000E+00 dyn= -1 muR=0.10000E+01 muF=0.10000E+01 dyn= -1 muR=0.20000E+01 muF=0.10000E+01 dyn= -1 muR=0.50000E+00 muF=0.10000E+01 dyn= -1 muR=0.10000E+01 muF=0.20000E+01 dyn= -1 muR=0.20000E+01 muF=0.20000E+01 dyn= -1 muR=0.50000E+00 muF=0.20000E+01 dyn= -1 muR=0.10000E+01 muF=0.50000E+00 dyn= -1 muR=0.20000E+01 muF=0.50000E+00 dyn= -1 muR=0.50000E+00 muF=0.50000E+00 PDF= 304200 NNPDF31_nlo_as_0118_hessian PDF= 304201 NNPDF31_nlo_as_0118_hessian PDF= 304202 NNPDF31_nlo_as_0118_hessian PDF= 304203 NNPDF31_nlo_as_0118_hessian PDF= 304204 NNPDF31_nlo_as_0118_hessian PDF= 304205 NNPDF31_nlo_as_0118_hessian PDF= 304206 NNPDF31_nlo_as_0118_hessian PDF= 304207 NNPDF31_nlo_as_0118_hessian PDF= 304208 NNPDF31_nlo_as_0118_hessian PDF= 304209 NNPDF31_nlo_as_0118_hessian PDF= 304210 NNPDF31_nlo_as_0118_hessian PDF= 304211 NNPDF31_nlo_as_0118_hessian PDF= 304212 NNPDF31_nlo_as_0118_hessian PDF= 304213 NNPDF31_nlo_as_0118_hessian PDF= 304214 NNPDF31_nlo_as_0118_hessian PDF= 304215 NNPDF31_nlo_as_0118_hessian PDF= 304216 NNPDF31_nlo_as_0118_hessian PDF= 304217 NNPDF31_nlo_as_0118_hessian PDF= 304218 NNPDF31_nlo_as_0118_hessian PDF= 304219 NNPDF31_nlo_as_0118_hessian PDF= 304220 NNPDF31_nlo_as_0118_hessian PDF= 304221 NNPDF31_nlo_as_0118_hessian PDF= 304222 NNPDF31_nlo_as_0118_hessian PDF= 304223 NNPDF31_nlo_as_0118_hessian PDF= 304224 NNPDF31_nlo_as_0118_hessian PDF= 304225 NNPDF31_nlo_as_0118_hessian PDF= 304226 NNPDF31_nlo_as_0118_hessian PDF= 304227 NNPDF31_nlo_as_0118_hessian PDF= 304228 NNPDF31_nlo_as_0118_hessian PDF= 304229 NNPDF31_nlo_as_0118_hessian PDF= 304230 NNPDF31_nlo_as_0118_hessian PDF= 304231 NNPDF31_nlo_as_0118_hessian PDF= 304232 NNPDF31_nlo_as_0118_hessian PDF= 304233 NNPDF31_nlo_as_0118_hessian PDF= 304234 NNPDF31_nlo_as_0118_hessian PDF= 304235 NNPDF31_nlo_as_0118_hessian PDF= 304236 NNPDF31_nlo_as_0118_hessian PDF= 304237 NNPDF31_nlo_as_0118_hessian PDF= 304238 NNPDF31_nlo_as_0118_hessian PDF= 304239 NNPDF31_nlo_as_0118_hessian PDF= 304240 NNPDF31_nlo_as_0118_hessian PDF= 304241 NNPDF31_nlo_as_0118_hessian PDF= 304242 NNPDF31_nlo_as_0118_hessian PDF= 304243 NNPDF31_nlo_as_0118_hessian PDF= 304244 NNPDF31_nlo_as_0118_hessian PDF= 304245 NNPDF31_nlo_as_0118_hessian PDF= 304246 NNPDF31_nlo_as_0118_hessian PDF= 304247 NNPDF31_nlo_as_0118_hessian PDF= 304248 NNPDF31_nlo_as_0118_hessian PDF= 304249 NNPDF31_nlo_as_0118_hessian PDF= 304250 NNPDF31_nlo_as_0118_hessian PDF= 304251 NNPDF31_nlo_as_0118_hessian PDF= 304252 NNPDF31_nlo_as_0118_hessian PDF= 304253 NNPDF31_nlo_as_0118_hessian PDF= 304254 NNPDF31_nlo_as_0118_hessian PDF= 304255 NNPDF31_nlo_as_0118_hessian PDF= 304256 NNPDF31_nlo_as_0118_hessian PDF= 304257 NNPDF31_nlo_as_0118_hessian PDF= 304258 NNPDF31_nlo_as_0118_hessian PDF= 304259 NNPDF31_nlo_as_0118_hessian PDF= 304260 NNPDF31_nlo_as_0118_hessian PDF= 304261 NNPDF31_nlo_as_0118_hessian PDF= 304262 NNPDF31_nlo_as_0118_hessian PDF= 304263 NNPDF31_nlo_as_0118_hessian PDF= 304264 NNPDF31_nlo_as_0118_hessian PDF= 304265 NNPDF31_nlo_as_0118_hessian PDF= 304266 NNPDF31_nlo_as_0118_hessian PDF= 304267 NNPDF31_nlo_as_0118_hessian PDF= 304268 NNPDF31_nlo_as_0118_hessian PDF= 304269 NNPDF31_nlo_as_0118_hessian PDF= 304270 NNPDF31_nlo_as_0118_hessian PDF= 304271 NNPDF31_nlo_as_0118_hessian PDF= 304272 NNPDF31_nlo_as_0118_hessian PDF= 304273 NNPDF31_nlo_as_0118_hessian PDF= 304274 NNPDF31_nlo_as_0118_hessian PDF= 304275 NNPDF31_nlo_as_0118_hessian PDF= 304276 NNPDF31_nlo_as_0118_hessian PDF= 304277 NNPDF31_nlo_as_0118_hessian PDF= 304278 NNPDF31_nlo_as_0118_hessian PDF= 304279 NNPDF31_nlo_as_0118_hessian PDF= 304280 NNPDF31_nlo_as_0118_hessian PDF= 304281 NNPDF31_nlo_as_0118_hessian PDF= 304282 NNPDF31_nlo_as_0118_hessian PDF= 304283 NNPDF31_nlo_as_0118_hessian PDF= 304284 NNPDF31_nlo_as_0118_hessian PDF= 304285 NNPDF31_nlo_as_0118_hessian PDF= 304286 NNPDF31_nlo_as_0118_hessian PDF= 304287 NNPDF31_nlo_as_0118_hessian PDF= 304288 NNPDF31_nlo_as_0118_hessian PDF= 304289 NNPDF31_nlo_as_0118_hessian PDF= 304290 NNPDF31_nlo_as_0118_hessian PDF= 304291 NNPDF31_nlo_as_0118_hessian PDF= 304292 NNPDF31_nlo_as_0118_hessian PDF= 304293 NNPDF31_nlo_as_0118_hessian PDF= 304294 NNPDF31_nlo_as_0118_hessian PDF= 304295 NNPDF31_nlo_as_0118_hessian PDF= 304296 NNPDF31_nlo_as_0118_hessian PDF= 304297 NNPDF31_nlo_as_0118_hessian PDF= 304298 NNPDF31_nlo_as_0118_hessian PDF= 304299 NNPDF31_nlo_as_0118_hessian PDF= 304300 NNPDF31_nlo_as_0118_hessian
#************************************************************ #* MadGraph5_aMC@NLO * #* * #* * * * #* * * * * * #* * * * * 5 * * * * * #* * * * * * #* * * * #* * #* * #* VERSION 2.7.3 2020-06-21 * #* * #* The MadGraph5_aMC@NLO Development Team - Find us at * #* https://server06.fynu.ucl.ac.be/projects/madgraph * #* * #************************************************************ #* * #* Command File for MadGraph5_aMC@NLO * #* * #* run as ./bin/mg5_aMC filename * #* * #************************************************************ set default_unset_couplings 99 set group_subprocesses Auto set ignore_six_quark_processes False set loop_optimized_output True set loop_color_flows False set gauge unitary set complex_mass_scheme False set max_npoint_for_channel 0 import model sm define p = g u c d s u~ c~ d~ s~ define j = g u c d s u~ c~ d~ s~ define l+ = e+ mu+ define l- = e- mu- define vl = ve vm vt define vl~ = ve~ vm~ vt~ import model HC_NLO_X0_UFO-heft define p = 21 2 4 1 3 -2 -4 -1 -3 5 -5 # pass to 5 flavors define j = p generate p p > x0 [QCD] output ggh_NLO ###################################################################### ## Process generated with '-heft' model restrictions ## ## 5F scheme (MB=0) ## ## GLUON FUSION AT NLO using the Higgs Effective Field Theory ## ## (i.e. in the limit Mtop->infinity) ## ## ## ## These restrictions should be used only to generate ## ## X0 (plus jets) in the gluon fusion channel ## ## ## ## NB: ## ## Please be sure that before generating this process, ## ## you have correctly set the content of the multiparticles ## ## 'p' (proton) and 'j' (jet) inside MG5_aMC, ## ## accordingly to the massless flavour scheme ## ## 5F: p, j = g d d~ u u~ s s~ c c~ b b~ ## ## ## ## Please be sure that you have filtered out all the top quark ## ## loops using '/ t' in the generation command ## ###################################################################### ################################### ## INFORMATION FOR FRBLOCK ################################### Block frblock 1 1.000000e+03 # Lambda 2 1.000000e+00 # cosa 3 1.000000e+00 # kSM 8 1.000000e+00 # kHll 9 1.000000e+00 # kAll 10 1.000000e+00 # kHaa 11 1.000000e+00 # kAaa 12 1.000000e+00 # kHza 13 1.000000e+00 # kAza 14 1.000000e+00 # kHgg 15 1.000000e+00 # kAgg 16 0.000000e+00 # kHzz 17 0.000000e+00 # kAzz 18 0.000000e+00 # kHww 19 0.000000e+00 # kAww 20 0.000000e+00 # kHda 21 0.000000e+00 # kHdz 22 0.000000e+00 # kHdwR (real part of kHdw) 23 0.000000e+00 # kHdwI (imaginary part of kHdw) ################################### ### INFORMATION FOR LOOP #################################### Block loop 1 9.118800e+01 # MU_R ################################### ## INFORMATION FOR SMINPUTS ################################### Block SMINPUTS 1 1.325070e+02 # aEWM1 2 1.166390e-05 # Gf 3 1.180000e-01 # aS ################################### ## INFORMATION FOR MASS ################################### Block MASS 6 1.730000e+02 # MT 15 1.777000e+00 # MTA 23 9.118800e+01 # MZ 25 1.250000e+02 # MX0 ## Dependent parameters, given by model restrictions. ## Those values should be edited following the ## analytical expression. MG5 ignores those values ## but they are important for interfacing the output of MG5 ## to external program such as Pythia. 1 0.000000 # d : 0.0 2 0.000000 # u : 0.0 3 0.000000 # s : 0.0 4 0.000000 # c : 0.0 5 0.000000 # b : 0.0 11 0.000000 # e- : 0.0 12 0.000000 # ve : 0.0 13 0.000000 # mu- : 0.0 14 0.000000 # vm : 0.0 16 0.000000 # vt : 0.0 21 0.000000 # g : 0.0 22 0.000000 # a : 0.0 24 80.419002 # w+ : cmath.sqrt(MZ__exp__2/2. + cmath.sqrt(MZ__exp__4/4. - (aEW*cmath.pi*MZ__exp__2)/(Gf*sqrt__2))) 82 0.000000 # gh : 0.0 ################################### ## INFORMATION FOR YUKAWA ################################### Block YUKAWA 15 1.777000e+00 # ymtau ################################### ## INFORMATION FOR DECAY ################################### DECAY 6 1.491500e+00 # top width DECAY 23 2.441404e+00 # Z width DECAY 24 2.047600e+00 # W width DECAY 25 4.070000e-03 # X0 width ## Dependent parameters, given by model restrictions. ## Those values should be edited following the ## analytical expression. MG5 ignores those values ## but they are important for interfacing the output of MG5 ## to external program such as Pythia. DECAY 1 0.000000 # d : 0.0 DECAY 2 0.000000 # u : 0.0 DECAY 3 0.000000 # s : 0.0 DECAY 4 0.000000 # c : 0.0 DECAY 5 0.000000 # b : 0.0 DECAY 11 0.000000 # e- : 0.0 DECAY 12 0.000000 # ve : 0.0 DECAY 13 0.000000 # mu- : 0.0 DECAY 14 0.000000 # vm : 0.0 DECAY 15 0.000000 # ta- : 0.0 DECAY 16 0.000000 # vt : 0.0 DECAY 21 0.000000 # g : 0.0 DECAY 22 0.000000 # a : 0.0 DECAY 82 0.000000 # gh : 0.0 #=========================================================== # QUANTUM NUMBERS OF NEW STATE(S) (NON SM PDG CODE) #=========================================================== Block QNUMBERS 82 # gh 1 0 # 3 times electric charge 2 1 # number of spin states (2S+1) 3 8 # colour rep (1: singlet, 3: triplet, 8: octet) 4 1 # Particle/Antiparticle distinction (0=own anti) #*********************************************************************** # MadGraph5_aMC@NLO * # * # run_card.dat aMC@NLO * # * # This file is used to set the parameters of the run. * # * # Some notation/conventions: * # * # Lines starting with a hash (#) are info or comments * # * # mind the format: value = variable ! comment * # * # Some of the values of variables can be list. These can either be * # comma or space separated. * # * # To display additional parameter, you can use the command: * # update to_full * #*********************************************************************** # #******************* # Running parameters #******************* # #*********************************************************************** # Tag name for the run (one word) * #*********************************************************************** tag_1 = run_tag ! name of the run #*********************************************************************** # Number of LHE events (and their normalization) and the required * # (relative) accuracy on the Xsec. * # These values are ignored for fixed order runs * #*********************************************************************** 400000 = nevents -1.0 = req_acc ! Required accuracy (-1=auto determined from nevents) -1 = nevt_job! Max number of events per job in event generation. ! (-1= no split). #*********************************************************************** # Normalize the weights of LHE events such that they sum or average to * # the total cross section * #*********************************************************************** average = event_norm ! valid settings: average, sum, bias #*********************************************************************** # Number of points per itegration channel (ignored for aMC@NLO runs) * #*********************************************************************** 0.01 = req_acc_FO ! Required accuracy (-1=ignored, and use the ! number of points and iter. below) # These numbers are ignored except if req_acc_FO is equal to -1 5000 = npoints_FO_grid ! number of points to setup grids 4 = niters_FO_grid ! number of iter. to setup grids 10000 = npoints_FO ! number of points to compute Xsec 6 = niters_FO ! number of iter. to compute Xsec #*********************************************************************** # Random number seed * #*********************************************************************** 37 = iseed #*********************************************************************** # Collider type and energy * #*********************************************************************** 1 = lpp1 ! beam 1 type (0 = no PDF) 1 = lpp2 ! beam 2 type (0 = no PDF) 6500.0 = ebeam1 ! beam 1 energy in GeV 6500.0 = ebeam2 ! beam 2 energy in GeV #*********************************************************************** # PDF choice: this automatically fixes also alpha_s(MZ) and its evol. * #*********************************************************************** lhapdf = pdlabel ! PDF set 304200 = lhaid ! If pdlabel=lhapdf, this is the lhapdf number. Only ! numbers for central PDF sets are allowed. Can be a list; ! PDF sets beyond the first are included via reweighting. #*********************************************************************** # Include the NLO Monte Carlo subtr. terms for the following parton * # shower (HERWIG6 | HERWIGPP | PYTHIA6Q | PYTHIA6PT | PYTHIA8) * # WARNING: PYTHIA6PT works only for processes without FSR!!!! * #*********************************************************************** HERWIG6 = parton_shower 1.0 = shower_scale_factor ! multiply default shower starting ! scale by this factor #*********************************************************************** # Renormalization and factorization scales * # (Default functional form for the non-fixed scales is the sum of * # the transverse masses divided by two of all final state particles * # and partons. This can be changed in SubProcesses/set_scales.f or via * # dynamical_scale_choice option) * #*********************************************************************** False = fixed_ren_scale ! if .true. use fixed ren scale False = fixed_fac_scale ! if .true. use fixed fac scale 91.118 = muR_ref_fixed ! fixed ren reference scale 91.118 = muF_ref_fixed ! fixed fact reference scale -1 = dynamical_scale_choice ! Choose one (or more) of the predefined ! dynamical choices. Can be a list; scale choices beyond the ! first are included via reweighting 1.0 = muR_over_ref ! ratio of current muR over reference muR 1.0 = muF_over_ref ! ratio of current muF over reference muF #*********************************************************************** # Reweight variables for scale dependence and PDF uncertainty * #*********************************************************************** 1.0, 2.0, 0.5 = rw_rscale ! muR factors to be included by reweighting 1.0, 2.0, 0.5 = rw_fscale ! muF factors to be included by reweighting True = reweight_scale ! Reweight to get scale variation using the ! rw_rscale and rw_fscale factors. Should be a list of ! booleans of equal length to dynamical_scale_choice to ! specify for which choice to include scale dependence. True = reweight_PDF ! Reweight to get PDF uncertainty. Should be a ! list booleans of equal length to lhaid to specify for ! which PDF set to include the uncertainties. #*********************************************************************** # Store reweight information in the LHE file for off-line model- * # parameter reweighting at NLO+PS accuracy * #*********************************************************************** False = store_rwgt_info ! Store info for reweighting in LHE file #*********************************************************************** # ickkw parameter: * # 0: No merging * # 3: FxFx Merging - WARNING! Applies merging only at the hard-event * # level. After showering an MLM-type merging should be applied as * # well. See http://amcatnlo.cern.ch/FxFx_merging.htm for details. * # 4: UNLOPS merging (with pythia8 only). No interface from within * # MG5_aMC available, but available in Pythia8. * # -1: NNLL+NLO jet-veto computation. See arxiv:1412.8408 [hep-ph]. * #*********************************************************************** 0 = ickkw #*********************************************************************** # #*********************************************************************** # BW cutoff (M+/-bwcutoff*Gamma). Determines which resonances are * # written in the LHE event file * #*********************************************************************** 15.0 = bwcutoff #*********************************************************************** # Cuts on the jets. Jet clustering is performed by FastJet. * # - When matching to a parton shower, these generation cuts should be * # considerably softer than the analysis cuts. * # - More specific cuts can be specified in SubProcesses/cuts.f * #*********************************************************************** 1.0 = jetalgo ! FastJet jet algorithm (1=kT, 0=C/A, -1=anti-kT) 0.7 = jetradius ! The radius parameter for the jet algorithm 10.0 = ptj ! Min jet transverse momentum -1.0 = etaj ! Max jet abs(pseudo-rap) (a value .lt.0 means no cut) #*********************************************************************** # Cuts on the charged leptons (e+, e-, mu+, mu-, tau+ and tau-) * # More specific cuts can be specified in SubProcesses/cuts.f * #*********************************************************************** 0.0 = ptl ! Min lepton transverse momentum -1.0 = etal ! Max lepton abs(pseudo-rap) (a value .lt.0 means no cut) 0.0 = drll ! Min distance between opposite sign lepton pairs 0.0 = drll_sf ! Min distance between opp. sign same-flavor lepton pairs 0.0 = mll ! Min inv. mass of all opposite sign lepton pairs 30.0 = mll_sf ! Min inv. mass of all opp. sign same-flavor lepton pairs #*********************************************************************** # Photon-isolation cuts, according to hep-ph/9801442. When ptgmin=0, * # all the other parameters are ignored. * # More specific cuts can be specified in SubProcesses/cuts.f * #*********************************************************************** 20.0 = ptgmin ! Min photon transverse momentum -1.0 = etagamma ! Max photon abs(pseudo-rap) 0.4 = R0gamma ! Radius of isolation code 1.0 = xn ! n parameter of eq.(3.4) in hep-ph/9801442 1.0 = epsgamma ! epsilon_gamma parameter of eq.(3.4) in hep-ph/9801442 True = isoEM ! isolate photons from EM energy (photons and leptons) #*********************************************************************** # Cuts associated to MASSIVE particles identified by their PDG codes. * # All cuts are applied to both particles and anti-particles, so use * # POSITIVE PDG CODES only. Example of the syntax is {6 : 100} or * # {6:100, 25:200} for multiple particles * #*********************************************************************** {} = pt_min_pdg ! Min pT for a massive particle {} = pt_max_pdg ! Max pT for a massive particle {} = mxx_min_pdg ! inv. mass for any pair of (anti)particles #*********************************************************************** # For aMCfast+APPLGRID use in PDF fitting (http://amcfast.hepforge.org)* #*********************************************************************** 0 = iappl ! aMCfast switch (0=OFF, 1=prepare grids, 2=fill grids) #*********************************************************************** muR H_T/2 := sum_i mT(i)/2, i=final state muF1 H_T/2 := sum_i mT(i)/2, i=final state muF2 H_T/2 := sum_i mT(i)/2, i=final state QES H_T/2 := sum_i mT(i)/2, i=final state 1 0.320000E+00 2 0.320000E+00 3 0.500000E+00 4 0.155000E+01 5 0.495000E+01 11 0.510999E-03 13 0.105658E+00 15 0.177682E+01 21 0.750000E+00 dyn= -1 muR=0.10000E+01 muF=0.10000E+01 dyn= -1 muR=0.20000E+01 muF=0.10000E+01 dyn= -1 muR=0.50000E+00 muF=0.10000E+01 dyn= -1 muR=0.10000E+01 muF=0.20000E+01 dyn= -1 muR=0.20000E+01 muF=0.20000E+01 dyn= -1 muR=0.50000E+00 muF=0.20000E+01 dyn= -1 muR=0.10000E+01 muF=0.50000E+00 dyn= -1 muR=0.20000E+01 muF=0.50000E+00 dyn= -1 muR=0.50000E+00 muF=0.50000E+00 PDF= 304200 NNPDF31_nlo_as_0118_hessian PDF= 304201 NNPDF31_nlo_as_0118_hessian PDF= 304202 NNPDF31_nlo_as_0118_hessian PDF= 304203 NNPDF31_nlo_as_0118_hessian PDF= 304204 NNPDF31_nlo_as_0118_hessian PDF= 304205 NNPDF31_nlo_as_0118_hessian PDF= 304206 NNPDF31_nlo_as_0118_hessian PDF= 304207 NNPDF31_nlo_as_0118_hessian PDF= 304208 NNPDF31_nlo_as_0118_hessian PDF= 304209 NNPDF31_nlo_as_0118_hessian PDF= 304210 NNPDF31_nlo_as_0118_hessian PDF= 304211 NNPDF31_nlo_as_0118_hessian PDF= 304212 NNPDF31_nlo_as_0118_hessian PDF= 304213 NNPDF31_nlo_as_0118_hessian PDF= 304214 NNPDF31_nlo_as_0118_hessian PDF= 304215 NNPDF31_nlo_as_0118_hessian PDF= 304216 NNPDF31_nlo_as_0118_hessian PDF= 304217 NNPDF31_nlo_as_0118_hessian PDF= 304218 NNPDF31_nlo_as_0118_hessian PDF= 304219 NNPDF31_nlo_as_0118_hessian PDF= 304220 NNPDF31_nlo_as_0118_hessian PDF= 304221 NNPDF31_nlo_as_0118_hessian PDF= 304222 NNPDF31_nlo_as_0118_hessian PDF= 304223 NNPDF31_nlo_as_0118_hessian PDF= 304224 NNPDF31_nlo_as_0118_hessian PDF= 304225 NNPDF31_nlo_as_0118_hessian PDF= 304226 NNPDF31_nlo_as_0118_hessian PDF= 304227 NNPDF31_nlo_as_0118_hessian PDF= 304228 NNPDF31_nlo_as_0118_hessian PDF= 304229 NNPDF31_nlo_as_0118_hessian PDF= 304230 NNPDF31_nlo_as_0118_hessian PDF= 304231 NNPDF31_nlo_as_0118_hessian PDF= 304232 NNPDF31_nlo_as_0118_hessian PDF= 304233 NNPDF31_nlo_as_0118_hessian PDF= 304234 NNPDF31_nlo_as_0118_hessian PDF= 304235 NNPDF31_nlo_as_0118_hessian PDF= 304236 NNPDF31_nlo_as_0118_hessian PDF= 304237 NNPDF31_nlo_as_0118_hessian PDF= 304238 NNPDF31_nlo_as_0118_hessian PDF= 304239 NNPDF31_nlo_as_0118_hessian PDF= 304240 NNPDF31_nlo_as_0118_hessian PDF= 304241 NNPDF31_nlo_as_0118_hessian PDF= 304242 NNPDF31_nlo_as_0118_hessian PDF= 304243 NNPDF31_nlo_as_0118_hessian PDF= 304244 NNPDF31_nlo_as_0118_hessian PDF= 304245 NNPDF31_nlo_as_0118_hessian PDF= 304246 NNPDF31_nlo_as_0118_hessian PDF= 304247 NNPDF31_nlo_as_0118_hessian PDF= 304248 NNPDF31_nlo_as_0118_hessian PDF= 304249 NNPDF31_nlo_as_0118_hessian PDF= 304250 NNPDF31_nlo_as_0118_hessian PDF= 304251 NNPDF31_nlo_as_0118_hessian PDF= 304252 NNPDF31_nlo_as_0118_hessian PDF= 304253 NNPDF31_nlo_as_0118_hessian PDF= 304254 NNPDF31_nlo_as_0118_hessian PDF= 304255 NNPDF31_nlo_as_0118_hessian PDF= 304256 NNPDF31_nlo_as_0118_hessian PDF= 304257 NNPDF31_nlo_as_0118_hessian PDF= 304258 NNPDF31_nlo_as_0118_hessian PDF= 304259 NNPDF31_nlo_as_0118_hessian PDF= 304260 NNPDF31_nlo_as_0118_hessian PDF= 304261 NNPDF31_nlo_as_0118_hessian PDF= 304262 NNPDF31_nlo_as_0118_hessian PDF= 304263 NNPDF31_nlo_as_0118_hessian PDF= 304264 NNPDF31_nlo_as_0118_hessian PDF= 304265 NNPDF31_nlo_as_0118_hessian PDF= 304266 NNPDF31_nlo_as_0118_hessian PDF= 304267 NNPDF31_nlo_as_0118_hessian PDF= 304268 NNPDF31_nlo_as_0118_hessian PDF= 304269 NNPDF31_nlo_as_0118_hessian PDF= 304270 NNPDF31_nlo_as_0118_hessian PDF= 304271 NNPDF31_nlo_as_0118_hessian PDF= 304272 NNPDF31_nlo_as_0118_hessian PDF= 304273 NNPDF31_nlo_as_0118_hessian PDF= 304274 NNPDF31_nlo_as_0118_hessian PDF= 304275 NNPDF31_nlo_as_0118_hessian PDF= 304276 NNPDF31_nlo_as_0118_hessian PDF= 304277 NNPDF31_nlo_as_0118_hessian PDF= 304278 NNPDF31_nlo_as_0118_hessian PDF= 304279 NNPDF31_nlo_as_0118_hessian PDF= 304280 NNPDF31_nlo_as_0118_hessian PDF= 304281 NNPDF31_nlo_as_0118_hessian PDF= 304282 NNPDF31_nlo_as_0118_hessian PDF= 304283 NNPDF31_nlo_as_0118_hessian PDF= 304284 NNPDF31_nlo_as_0118_hessian PDF= 304285 NNPDF31_nlo_as_0118_hessian PDF= 304286 NNPDF31_nlo_as_0118_hessian PDF= 304287 NNPDF31_nlo_as_0118_hessian PDF= 304288 NNPDF31_nlo_as_0118_hessian PDF= 304289 NNPDF31_nlo_as_0118_hessian PDF= 304290 NNPDF31_nlo_as_0118_hessian PDF= 304291 NNPDF31_nlo_as_0118_hessian PDF= 304292 NNPDF31_nlo_as_0118_hessian PDF= 304293 NNPDF31_nlo_as_0118_hessian PDF= 304294 NNPDF31_nlo_as_0118_hessian PDF= 304295 NNPDF31_nlo_as_0118_hessian PDF= 304296 NNPDF31_nlo_as_0118_hessian PDF= 304297 NNPDF31_nlo_as_0118_hessian PDF= 304298 NNPDF31_nlo_as_0118_hessian PDF= 304299 NNPDF31_nlo_as_0118_hessian PDF= 304300 NNPDF31_nlo_as_0118_hessian
#************************************************************ #* MadGraph5_aMC@NLO * #* * #* * * * #* * * * * * #* * * * * 5 * * * * * #* * * * * * #* * * * #* * #* * #* VERSION 2.7.3 2020-06-21 * #* * #* The MadGraph5_aMC@NLO Development Team - Find us at * #* https://server06.fynu.ucl.ac.be/projects/madgraph * #* * #************************************************************ #* * #* Command File for MadGraph5_aMC@NLO * #* * #* run as ./bin/mg5_aMC filename * #* * #************************************************************ set default_unset_couplings 99 set group_subprocesses Auto set ignore_six_quark_processes False set loop_optimized_output True set loop_color_flows False set gauge unitary set complex_mass_scheme False set max_npoint_for_channel 0 import model sm define p = g u c d s u~ c~ d~ s~ define j = g u c d s u~ c~ d~ s~ define l+ = e+ mu+ define l- = e- mu- define vl = ve vm vt define vl~ = ve~ vm~ vt~ import model HC_NLO_X0_UFO-heft define p = 21 2 4 1 3 -2 -4 -1 -3 5 -5 # pass to 5 flavors define j = p generate p p > x0 [QCD] output ggh_NLO ###################################################################### ## Process generated with '-heft' model restrictions ## ## 5F scheme (MB=0) ## ## GLUON FUSION AT NLO using the Higgs Effective Field Theory ## ## (i.e. in the limit Mtop->infinity) ## ## ## ## These restrictions should be used only to generate ## ## X0 (plus jets) in the gluon fusion channel ## ## ## ## NB: ## ## Please be sure that before generating this process, ## ## you have correctly set the content of the multiparticles ## ## 'p' (proton) and 'j' (jet) inside MG5_aMC, ## ## accordingly to the massless flavour scheme ## ## 5F: p, j = g d d~ u u~ s s~ c c~ b b~ ## ## ## ## Please be sure that you have filtered out all the top quark ## ## loops using '/ t' in the generation command ## ###################################################################### ################################### ## INFORMATION FOR FRBLOCK ################################### Block frblock 1 1.000000e+03 # Lambda 2 1.000000e+00 # cosa 3 1.000000e+00 # kSM 8 1.000000e+00 # kHll 9 1.000000e+00 # kAll 10 1.000000e+00 # kHaa 11 1.000000e+00 # kAaa 12 1.000000e+00 # kHza 13 1.000000e+00 # kAza 14 1.000000e+00 # kHgg 15 1.000000e+00 # kAgg 16 0.000000e+00 # kHzz 17 0.000000e+00 # kAzz 18 0.000000e+00 # kHww 19 0.000000e+00 # kAww 20 0.000000e+00 # kHda 21 0.000000e+00 # kHdz 22 0.000000e+00 # kHdwR (real part of kHdw) 23 0.000000e+00 # kHdwI (imaginary part of kHdw) ################################### ### INFORMATION FOR LOOP #################################### Block loop 1 9.118800e+01 # MU_R ################################### ## INFORMATION FOR SMINPUTS ################################### Block SMINPUTS 1 1.325070e+02 # aEWM1 2 1.166390e-05 # Gf 3 1.180000e-01 # aS ################################### ## INFORMATION FOR MASS ################################### Block MASS 6 1.730000e+02 # MT 15 1.777000e+00 # MTA 23 9.118800e+01 # MZ 25 1.250000e+02 # MX0 ## Dependent parameters, given by model restrictions. ## Those values should be edited following the ## analytical expression. MG5 ignores those values ## but they are important for interfacing the output of MG5 ## to external program such as Pythia. 1 0.000000 # d : 0.0 2 0.000000 # u : 0.0 3 0.000000 # s : 0.0 4 0.000000 # c : 0.0 5 0.000000 # b : 0.0 11 0.000000 # e- : 0.0 12 0.000000 # ve : 0.0 13 0.000000 # mu- : 0.0 14 0.000000 # vm : 0.0 16 0.000000 # vt : 0.0 21 0.000000 # g : 0.0 22 0.000000 # a : 0.0 24 80.419002 # w+ : cmath.sqrt(MZ__exp__2/2. + cmath.sqrt(MZ__exp__4/4. - (aEW*cmath.pi*MZ__exp__2)/(Gf*sqrt__2))) 82 0.000000 # gh : 0.0 ################################### ## INFORMATION FOR YUKAWA ################################### Block YUKAWA 15 1.777000e+00 # ymtau ################################### ## INFORMATION FOR DECAY ################################### DECAY 6 1.491500e+00 # top width DECAY 23 2.441404e+00 # Z width DECAY 24 2.047600e+00 # W width DECAY 25 4.070000e-03 # X0 width ## Dependent parameters, given by model restrictions. ## Those values should be edited following the ## analytical expression. MG5 ignores those values ## but they are important for interfacing the output of MG5 ## to external program such as Pythia. DECAY 1 0.000000 # d : 0.0 DECAY 2 0.000000 # u : 0.0 DECAY 3 0.000000 # s : 0.0 DECAY 4 0.000000 # c : 0.0 DECAY 5 0.000000 # b : 0.0 DECAY 11 0.000000 # e- : 0.0 DECAY 12 0.000000 # ve : 0.0 DECAY 13 0.000000 # mu- : 0.0 DECAY 14 0.000000 # vm : 0.0 DECAY 15 0.000000 # ta- : 0.0 DECAY 16 0.000000 # vt : 0.0 DECAY 21 0.000000 # g : 0.0 DECAY 22 0.000000 # a : 0.0 DECAY 82 0.000000 # gh : 0.0 #=========================================================== # QUANTUM NUMBERS OF NEW STATE(S) (NON SM PDG CODE) #=========================================================== Block QNUMBERS 82 # gh 1 0 # 3 times electric charge 2 1 # number of spin states (2S+1) 3 8 # colour rep (1: singlet, 3: triplet, 8: octet) 4 1 # Particle/Antiparticle distinction (0=own anti) #*********************************************************************** # MadGraph5_aMC@NLO * # * # run_card.dat aMC@NLO * # * # This file is used to set the parameters of the run. * # * # Some notation/conventions: * # * # Lines starting with a hash (#) are info or comments * # * # mind the format: value = variable ! comment * # * # Some of the values of variables can be list. These can either be * # comma or space separated. * # * # To display additional parameter, you can use the command: * # update to_full * #*********************************************************************** # #******************* # Running parameters #******************* # #*********************************************************************** # Tag name for the run (one word) * #*********************************************************************** tag_1 = run_tag ! name of the run #*********************************************************************** # Number of LHE events (and their normalization) and the required * # (relative) accuracy on the Xsec. * # These values are ignored for fixed order runs * #*********************************************************************** 400000 = nevents -1.0 = req_acc ! Required accuracy (-1=auto determined from nevents) -1 = nevt_job! Max number of events per job in event generation. ! (-1= no split). #*********************************************************************** # Normalize the weights of LHE events such that they sum or average to * # the total cross section * #*********************************************************************** average = event_norm ! valid settings: average, sum, bias #*********************************************************************** # Number of points per itegration channel (ignored for aMC@NLO runs) * #*********************************************************************** 0.01 = req_acc_FO ! Required accuracy (-1=ignored, and use the ! number of points and iter. below) # These numbers are ignored except if req_acc_FO is equal to -1 5000 = npoints_FO_grid ! number of points to setup grids 4 = niters_FO_grid ! number of iter. to setup grids 10000 = npoints_FO ! number of points to compute Xsec 6 = niters_FO ! number of iter. to compute Xsec #*********************************************************************** # Random number seed * #*********************************************************************** 37 = iseed #*********************************************************************** # Collider type and energy * #*********************************************************************** 1 = lpp1 ! beam 1 type (0 = no PDF) 1 = lpp2 ! beam 2 type (0 = no PDF) 6500.0 = ebeam1 ! beam 1 energy in GeV 6500.0 = ebeam2 ! beam 2 energy in GeV #*********************************************************************** # PDF choice: this automatically fixes also alpha_s(MZ) and its evol. * #*********************************************************************** lhapdf = pdlabel ! PDF set 304200 = lhaid ! If pdlabel=lhapdf, this is the lhapdf number. Only ! numbers for central PDF sets are allowed. Can be a list; ! PDF sets beyond the first are included via reweighting. #*********************************************************************** # Include the NLO Monte Carlo subtr. terms for the following parton * # shower (HERWIG6 | HERWIGPP | PYTHIA6Q | PYTHIA6PT | PYTHIA8) * # WARNING: PYTHIA6PT works only for processes without FSR!!!! * #*********************************************************************** HERWIG6 = parton_shower 1.0 = shower_scale_factor ! multiply default shower starting ! scale by this factor #*********************************************************************** # Renormalization and factorization scales * # (Default functional form for the non-fixed scales is the sum of * # the transverse masses divided by two of all final state particles * # and partons. This can be changed in SubProcesses/set_scales.f or via * # dynamical_scale_choice option) * #*********************************************************************** False = fixed_ren_scale ! if .true. use fixed ren scale False = fixed_fac_scale ! if .true. use fixed fac scale 91.118 = muR_ref_fixed ! fixed ren reference scale 91.118 = muF_ref_fixed ! fixed fact reference scale -1 = dynamical_scale_choice ! Choose one (or more) of the predefined ! dynamical choices. Can be a list; scale choices beyond the ! first are included via reweighting 1.0 = muR_over_ref ! ratio of current muR over reference muR 1.0 = muF_over_ref ! ratio of current muF over reference muF #*********************************************************************** # Reweight variables for scale dependence and PDF uncertainty * #*********************************************************************** 1.0, 2.0, 0.5 = rw_rscale ! muR factors to be included by reweighting 1.0, 2.0, 0.5 = rw_fscale ! muF factors to be included by reweighting True = reweight_scale ! Reweight to get scale variation using the ! rw_rscale and rw_fscale factors. Should be a list of ! booleans of equal length to dynamical_scale_choice to ! specify for which choice to include scale dependence. True = reweight_PDF ! Reweight to get PDF uncertainty. Should be a ! list booleans of equal length to lhaid to specify for ! which PDF set to include the uncertainties. #*********************************************************************** # Store reweight information in the LHE file for off-line model- * # parameter reweighting at NLO+PS accuracy * #*********************************************************************** False = store_rwgt_info ! Store info for reweighting in LHE file #*********************************************************************** # ickkw parameter: * # 0: No merging * # 3: FxFx Merging - WARNING! Applies merging only at the hard-event * # level. After showering an MLM-type merging should be applied as * # well. See http://amcatnlo.cern.ch/FxFx_merging.htm for details. * # 4: UNLOPS merging (with pythia8 only). No interface from within * # MG5_aMC available, but available in Pythia8. * # -1: NNLL+NLO jet-veto computation. See arxiv:1412.8408 [hep-ph]. * #*********************************************************************** 0 = ickkw #*********************************************************************** # #*********************************************************************** # BW cutoff (M+/-bwcutoff*Gamma). Determines which resonances are * # written in the LHE event file * #*********************************************************************** 15.0 = bwcutoff #*********************************************************************** # Cuts on the jets. Jet clustering is performed by FastJet. * # - When matching to a parton shower, these generation cuts should be * # considerably softer than the analysis cuts. * # - More specific cuts can be specified in SubProcesses/cuts.f * #*********************************************************************** 1.0 = jetalgo ! FastJet jet algorithm (1=kT, 0=C/A, -1=anti-kT) 0.7 = jetradius ! The radius parameter for the jet algorithm 10.0 = ptj ! Min jet transverse momentum -1.0 = etaj ! Max jet abs(pseudo-rap) (a value .lt.0 means no cut) #*********************************************************************** # Cuts on the charged leptons (e+, e-, mu+, mu-, tau+ and tau-) * # More specific cuts can be specified in SubProcesses/cuts.f * #*********************************************************************** 0.0 = ptl ! Min lepton transverse momentum -1.0 = etal ! Max lepton abs(pseudo-rap) (a value .lt.0 means no cut) 0.0 = drll ! Min distance between opposite sign lepton pairs 0.0 = drll_sf ! Min distance between opp. sign same-flavor lepton pairs 0.0 = mll ! Min inv. mass of all opposite sign lepton pairs 30.0 = mll_sf ! Min inv. mass of all opp. sign same-flavor lepton pairs #*********************************************************************** # Photon-isolation cuts, according to hep-ph/9801442. When ptgmin=0, * # all the other parameters are ignored. * # More specific cuts can be specified in SubProcesses/cuts.f * #*********************************************************************** 20.0 = ptgmin ! Min photon transverse momentum -1.0 = etagamma ! Max photon abs(pseudo-rap) 0.4 = R0gamma ! Radius of isolation code 1.0 = xn ! n parameter of eq.(3.4) in hep-ph/9801442 1.0 = epsgamma ! epsilon_gamma parameter of eq.(3.4) in hep-ph/9801442 True = isoEM ! isolate photons from EM energy (photons and leptons) #*********************************************************************** # Cuts associated to MASSIVE particles identified by their PDG codes. * # All cuts are applied to both particles and anti-particles, so use * # POSITIVE PDG CODES only. Example of the syntax is {6 : 100} or * # {6:100, 25:200} for multiple particles * #*********************************************************************** {} = pt_min_pdg ! Min pT for a massive particle {} = pt_max_pdg ! Max pT for a massive particle {} = mxx_min_pdg ! inv. mass for any pair of (anti)particles #*********************************************************************** # For aMCfast+APPLGRID use in PDF fitting (http://amcfast.hepforge.org)* #*********************************************************************** 0 = iappl ! aMCfast switch (0=OFF, 1=prepare grids, 2=fill grids) #*********************************************************************** muR H_T/2 := sum_i mT(i)/2, i=final state muF1 H_T/2 := sum_i mT(i)/2, i=final state muF2 H_T/2 := sum_i mT(i)/2, i=final state QES H_T/2 := sum_i mT(i)/2, i=final state 1 0.320000E+00 2 0.320000E+00 3 0.500000E+00 4 0.155000E+01 5 0.495000E+01 11 0.510999E-03 13 0.105658E+00 15 0.177682E+01 21 0.750000E+00 dyn= -1 muR=0.10000E+01 muF=0.10000E+01 dyn= -1 muR=0.20000E+01 muF=0.10000E+01 dyn= -1 muR=0.50000E+00 muF=0.10000E+01 dyn= -1 muR=0.10000E+01 muF=0.20000E+01 dyn= -1 muR=0.20000E+01 muF=0.20000E+01 dyn= -1 muR=0.50000E+00 muF=0.20000E+01 dyn= -1 muR=0.10000E+01 muF=0.50000E+00 dyn= -1 muR=0.20000E+01 muF=0.50000E+00 dyn= -1 muR=0.50000E+00 muF=0.50000E+00 PDF= 304200 NNPDF31_nlo_as_0118_hessian PDF= 304201 NNPDF31_nlo_as_0118_hessian PDF= 304202 NNPDF31_nlo_as_0118_hessian PDF= 304203 NNPDF31_nlo_as_0118_hessian PDF= 304204 NNPDF31_nlo_as_0118_hessian PDF= 304205 NNPDF31_nlo_as_0118_hessian PDF= 304206 NNPDF31_nlo_as_0118_hessian PDF= 304207 NNPDF31_nlo_as_0118_hessian PDF= 304208 NNPDF31_nlo_as_0118_hessian PDF= 304209 NNPDF31_nlo_as_0118_hessian PDF= 304210 NNPDF31_nlo_as_0118_hessian PDF= 304211 NNPDF31_nlo_as_0118_hessian PDF= 304212 NNPDF31_nlo_as_0118_hessian PDF= 304213 NNPDF31_nlo_as_0118_hessian PDF= 304214 NNPDF31_nlo_as_0118_hessian PDF= 304215 NNPDF31_nlo_as_0118_hessian PDF= 304216 NNPDF31_nlo_as_0118_hessian PDF= 304217 NNPDF31_nlo_as_0118_hessian PDF= 304218 NNPDF31_nlo_as_0118_hessian PDF= 304219 NNPDF31_nlo_as_0118_hessian PDF= 304220 NNPDF31_nlo_as_0118_hessian PDF= 304221 NNPDF31_nlo_as_0118_hessian PDF= 304222 NNPDF31_nlo_as_0118_hessian PDF= 304223 NNPDF31_nlo_as_0118_hessian PDF= 304224 NNPDF31_nlo_as_0118_hessian PDF= 304225 NNPDF31_nlo_as_0118_hessian PDF= 304226 NNPDF31_nlo_as_0118_hessian PDF= 304227 NNPDF31_nlo_as_0118_hessian PDF= 304228 NNPDF31_nlo_as_0118_hessian PDF= 304229 NNPDF31_nlo_as_0118_hessian PDF= 304230 NNPDF31_nlo_as_0118_hessian PDF= 304231 NNPDF31_nlo_as_0118_hessian PDF= 304232 NNPDF31_nlo_as_0118_hessian PDF= 304233 NNPDF31_nlo_as_0118_hessian PDF= 304234 NNPDF31_nlo_as_0118_hessian PDF= 304235 NNPDF31_nlo_as_0118_hessian PDF= 304236 NNPDF31_nlo_as_0118_hessian PDF= 304237 NNPDF31_nlo_as_0118_hessian PDF= 304238 NNPDF31_nlo_as_0118_hessian PDF= 304239 NNPDF31_nlo_as_0118_hessian PDF= 304240 NNPDF31_nlo_as_0118_hessian PDF= 304241 NNPDF31_nlo_as_0118_hessian PDF= 304242 NNPDF31_nlo_as_0118_hessian PDF= 304243 NNPDF31_nlo_as_0118_hessian PDF= 304244 NNPDF31_nlo_as_0118_hessian PDF= 304245 NNPDF31_nlo_as_0118_hessian PDF= 304246 NNPDF31_nlo_as_0118_hessian PDF= 304247 NNPDF31_nlo_as_0118_hessian PDF= 304248 NNPDF31_nlo_as_0118_hessian PDF= 304249 NNPDF31_nlo_as_0118_hessian PDF= 304250 NNPDF31_nlo_as_0118_hessian PDF= 304251 NNPDF31_nlo_as_0118_hessian PDF= 304252 NNPDF31_nlo_as_0118_hessian PDF= 304253 NNPDF31_nlo_as_0118_hessian PDF= 304254 NNPDF31_nlo_as_0118_hessian PDF= 304255 NNPDF31_nlo_as_0118_hessian PDF= 304256 NNPDF31_nlo_as_0118_hessian PDF= 304257 NNPDF31_nlo_as_0118_hessian PDF= 304258 NNPDF31_nlo_as_0118_hessian PDF= 304259 NNPDF31_nlo_as_0118_hessian PDF= 304260 NNPDF31_nlo_as_0118_hessian PDF= 304261 NNPDF31_nlo_as_0118_hessian PDF= 304262 NNPDF31_nlo_as_0118_hessian PDF= 304263 NNPDF31_nlo_as_0118_hessian PDF= 304264 NNPDF31_nlo_as_0118_hessian PDF= 304265 NNPDF31_nlo_as_0118_hessian PDF= 304266 NNPDF31_nlo_as_0118_hessian PDF= 304267 NNPDF31_nlo_as_0118_hessian PDF= 304268 NNPDF31_nlo_as_0118_hessian PDF= 304269 NNPDF31_nlo_as_0118_hessian PDF= 304270 NNPDF31_nlo_as_0118_hessian PDF= 304271 NNPDF31_nlo_as_0118_hessian PDF= 304272 NNPDF31_nlo_as_0118_hessian PDF= 304273 NNPDF31_nlo_as_0118_hessian PDF= 304274 NNPDF31_nlo_as_0118_hessian PDF= 304275 NNPDF31_nlo_as_0118_hessian PDF= 304276 NNPDF31_nlo_as_0118_hessian PDF= 304277 NNPDF31_nlo_as_0118_hessian PDF= 304278 NNPDF31_nlo_as_0118_hessian PDF= 304279 NNPDF31_nlo_as_0118_hessian PDF= 304280 NNPDF31_nlo_as_0118_hessian PDF= 304281 NNPDF31_nlo_as_0118_hessian PDF= 304282 NNPDF31_nlo_as_0118_hessian PDF= 304283 NNPDF31_nlo_as_0118_hessian PDF= 304284 NNPDF31_nlo_as_0118_hessian PDF= 304285 NNPDF31_nlo_as_0118_hessian PDF= 304286 NNPDF31_nlo_as_0118_hessian PDF= 304287 NNPDF31_nlo_as_0118_hessian PDF= 304288 NNPDF31_nlo_as_0118_hessian PDF= 304289 NNPDF31_nlo_as_0118_hessian PDF= 304290 NNPDF31_nlo_as_0118_hessian PDF= 304291 NNPDF31_nlo_as_0118_hessian PDF= 304292 NNPDF31_nlo_as_0118_hessian PDF= 304293 NNPDF31_nlo_as_0118_hessian PDF= 304294 NNPDF31_nlo_as_0118_hessian PDF= 304295 NNPDF31_nlo_as_0118_hessian PDF= 304296 NNPDF31_nlo_as_0118_hessian PDF= 304297 NNPDF31_nlo_as_0118_hessian PDF= 304298 NNPDF31_nlo_as_0118_hessian PDF= 304299 NNPDF31_nlo_as_0118_hessian PDF= 304300 NNPDF31_nlo_as_0118_hessian
#************************************************************ #* MadGraph5_aMC@NLO * #* * #* * * * #* * * * * * #* * * * * 5 * * * * * #* * * * * * #* * * * #* * #* * #* VERSION 2.7.3 2020-06-21 * #* * #* The MadGraph5_aMC@NLO Development Team - Find us at * #* https://server06.fynu.ucl.ac.be/projects/madgraph * #* * #************************************************************ #* * #* Command File for MadGraph5_aMC@NLO * #* * #* run as ./bin/mg5_aMC filename * #* * #************************************************************ set default_unset_couplings 99 set group_subprocesses Auto set ignore_six_quark_processes False set loop_optimized_output True set loop_color_flows False set gauge unitary set complex_mass_scheme False set max_npoint_for_channel 0 import model sm define p = g u c d s u~ c~ d~ s~ define j = g u c d s u~ c~ d~ s~ define l+ = e+ mu+ define l- = e- mu- define vl = ve vm vt define vl~ = ve~ vm~ vt~ import model HC_NLO_X0_UFO-heft define p = 21 2 4 1 3 -2 -4 -1 -3 5 -5 # pass to 5 flavors define j = p generate p p > x0 [QCD] output ggh_NLO ###################################################################### ## Process generated with '-heft' model restrictions ## ## 5F scheme (MB=0) ## ## GLUON FUSION AT NLO using the Higgs Effective Field Theory ## ## (i.e. in the limit Mtop->infinity) ## ## ## ## These restrictions should be used only to generate ## ## X0 (plus jets) in the gluon fusion channel ## ## ## ## NB: ## ## Please be sure that before generating this process, ## ## you have correctly set the content of the multiparticles ## ## 'p' (proton) and 'j' (jet) inside MG5_aMC, ## ## accordingly to the massless flavour scheme ## ## 5F: p, j = g d d~ u u~ s s~ c c~ b b~ ## ## ## ## Please be sure that you have filtered out all the top quark ## ## loops using '/ t' in the generation command ## ###################################################################### ################################### ## INFORMATION FOR FRBLOCK ################################### Block frblock 1 1.000000e+03 # Lambda 2 1.000000e+00 # cosa 3 1.000000e+00 # kSM 8 1.000000e+00 # kHll 9 1.000000e+00 # kAll 10 1.000000e+00 # kHaa 11 1.000000e+00 # kAaa 12 1.000000e+00 # kHza 13 1.000000e+00 # kAza 14 1.000000e+00 # kHgg 15 1.000000e+00 # kAgg 16 0.000000e+00 # kHzz 17 0.000000e+00 # kAzz 18 0.000000e+00 # kHww 19 0.000000e+00 # kAww 20 0.000000e+00 # kHda 21 0.000000e+00 # kHdz 22 0.000000e+00 # kHdwR (real part of kHdw) 23 0.000000e+00 # kHdwI (imaginary part of kHdw) ################################### ### INFORMATION FOR LOOP #################################### Block loop 1 9.118800e+01 # MU_R ################################### ## INFORMATION FOR SMINPUTS ################################### Block SMINPUTS 1 1.325070e+02 # aEWM1 2 1.166390e-05 # Gf 3 1.180000e-01 # aS ################################### ## INFORMATION FOR MASS ################################### Block MASS 6 1.730000e+02 # MT 15 1.777000e+00 # MTA 23 9.118800e+01 # MZ 25 1.250000e+02 # MX0 ## Dependent parameters, given by model restrictions. ## Those values should be edited following the ## analytical expression. MG5 ignores those values ## but they are important for interfacing the output of MG5 ## to external program such as Pythia. 1 0.000000 # d : 0.0 2 0.000000 # u : 0.0 3 0.000000 # s : 0.0 4 0.000000 # c : 0.0 5 0.000000 # b : 0.0 11 0.000000 # e- : 0.0 12 0.000000 # ve : 0.0 13 0.000000 # mu- : 0.0 14 0.000000 # vm : 0.0 16 0.000000 # vt : 0.0 21 0.000000 # g : 0.0 22 0.000000 # a : 0.0 24 80.419002 # w+ : cmath.sqrt(MZ__exp__2/2. + cmath.sqrt(MZ__exp__4/4. - (aEW*cmath.pi*MZ__exp__2)/(Gf*sqrt__2))) 82 0.000000 # gh : 0.0 ################################### ## INFORMATION FOR YUKAWA ################################### Block YUKAWA 15 1.777000e+00 # ymtau ################################### ## INFORMATION FOR DECAY ################################### DECAY 6 1.491500e+00 # top width DECAY 23 2.441404e+00 # Z width DECAY 24 2.047600e+00 # W width DECAY 25 4.070000e-03 # X0 width ## Dependent parameters, given by model restrictions. ## Those values should be edited following the ## analytical expression. MG5 ignores those values ## but they are important for interfacing the output of MG5 ## to external program such as Pythia. DECAY 1 0.000000 # d : 0.0 DECAY 2 0.000000 # u : 0.0 DECAY 3 0.000000 # s : 0.0 DECAY 4 0.000000 # c : 0.0 DECAY 5 0.000000 # b : 0.0 DECAY 11 0.000000 # e- : 0.0 DECAY 12 0.000000 # ve : 0.0 DECAY 13 0.000000 # mu- : 0.0 DECAY 14 0.000000 # vm : 0.0 DECAY 15 0.000000 # ta- : 0.0 DECAY 16 0.000000 # vt : 0.0 DECAY 21 0.000000 # g : 0.0 DECAY 22 0.000000 # a : 0.0 DECAY 82 0.000000 # gh : 0.0 #=========================================================== # QUANTUM NUMBERS OF NEW STATE(S) (NON SM PDG CODE) #=========================================================== Block QNUMBERS 82 # gh 1 0 # 3 times electric charge 2 1 # number of spin states (2S+1) 3 8 # colour rep (1: singlet, 3: triplet, 8: octet) 4 1 # Particle/Antiparticle distinction (0=own anti) #*********************************************************************** # MadGraph5_aMC@NLO * # * # run_card.dat aMC@NLO * # * # This file is used to set the parameters of the run. * # * # Some notation/conventions: * # * # Lines starting with a hash (#) are info or comments * # * # mind the format: value = variable ! comment * # * # Some of the values of variables can be list. These can either be * # comma or space separated. * # * # To display additional parameter, you can use the command: * # update to_full * #*********************************************************************** # #******************* # Running parameters #******************* # #*********************************************************************** # Tag name for the run (one word) * #*********************************************************************** tag_1 = run_tag ! name of the run #*********************************************************************** # Number of LHE events (and their normalization) and the required * # (relative) accuracy on the Xsec. * # These values are ignored for fixed order runs * #*********************************************************************** 400000 = nevents -1.0 = req_acc ! Required accuracy (-1=auto determined from nevents) -1 = nevt_job! Max number of events per job in event generation. ! (-1= no split). #*********************************************************************** # Normalize the weights of LHE events such that they sum or average to * # the total cross section * #*********************************************************************** average = event_norm ! valid settings: average, sum, bias #*********************************************************************** # Number of points per itegration channel (ignored for aMC@NLO runs) * #*********************************************************************** 0.01 = req_acc_FO ! Required accuracy (-1=ignored, and use the ! number of points and iter. below) # These numbers are ignored except if req_acc_FO is equal to -1 5000 = npoints_FO_grid ! number of points to setup grids 4 = niters_FO_grid ! number of iter. to setup grids 10000 = npoints_FO ! number of points to compute Xsec 6 = niters_FO ! number of iter. to compute Xsec #*********************************************************************** # Random number seed * #*********************************************************************** 37 = iseed #*********************************************************************** # Collider type and energy * #*********************************************************************** 1 = lpp1 ! beam 1 type (0 = no PDF) 1 = lpp2 ! beam 2 type (0 = no PDF) 6500.0 = ebeam1 ! beam 1 energy in GeV 6500.0 = ebeam2 ! beam 2 energy in GeV #*********************************************************************** # PDF choice: this automatically fixes also alpha_s(MZ) and its evol. * #*********************************************************************** lhapdf = pdlabel ! PDF set 304200 = lhaid ! If pdlabel=lhapdf, this is the lhapdf number. Only ! numbers for central PDF sets are allowed. Can be a list; ! PDF sets beyond the first are included via reweighting. #*********************************************************************** # Include the NLO Monte Carlo subtr. terms for the following parton * # shower (HERWIG6 | HERWIGPP | PYTHIA6Q | PYTHIA6PT | PYTHIA8) * # WARNING: PYTHIA6PT works only for processes without FSR!!!! * #*********************************************************************** HERWIG6 = parton_shower 1.0 = shower_scale_factor ! multiply default shower starting ! scale by this factor #*********************************************************************** # Renormalization and factorization scales * # (Default functional form for the non-fixed scales is the sum of * # the transverse masses divided by two of all final state particles * # and partons. This can be changed in SubProcesses/set_scales.f or via * # dynamical_scale_choice option) * #*********************************************************************** False = fixed_ren_scale ! if .true. use fixed ren scale False = fixed_fac_scale ! if .true. use fixed fac scale 91.118 = muR_ref_fixed ! fixed ren reference scale 91.118 = muF_ref_fixed ! fixed fact reference scale -1 = dynamical_scale_choice ! Choose one (or more) of the predefined ! dynamical choices. Can be a list; scale choices beyond the ! first are included via reweighting 1.0 = muR_over_ref ! ratio of current muR over reference muR 1.0 = muF_over_ref ! ratio of current muF over reference muF #*********************************************************************** # Reweight variables for scale dependence and PDF uncertainty * #*********************************************************************** 1.0, 2.0, 0.5 = rw_rscale ! muR factors to be included by reweighting 1.0, 2.0, 0.5 = rw_fscale ! muF factors to be included by reweighting True = reweight_scale ! Reweight to get scale variation using the ! rw_rscale and rw_fscale factors. Should be a list of ! booleans of equal length to dynamical_scale_choice to ! specify for which choice to include scale dependence. True = reweight_PDF ! Reweight to get PDF uncertainty. Should be a ! list booleans of equal length to lhaid to specify for ! which PDF set to include the uncertainties. #*********************************************************************** # Store reweight information in the LHE file for off-line model- * # parameter reweighting at NLO+PS accuracy * #*********************************************************************** False = store_rwgt_info ! Store info for reweighting in LHE file #*********************************************************************** # ickkw parameter: * # 0: No merging * # 3: FxFx Merging - WARNING! Applies merging only at the hard-event * # level. After showering an MLM-type merging should be applied as * # well. See http://amcatnlo.cern.ch/FxFx_merging.htm for details. * # 4: UNLOPS merging (with pythia8 only). No interface from within * # MG5_aMC available, but available in Pythia8. * # -1: NNLL+NLO jet-veto computation. See arxiv:1412.8408 [hep-ph]. * #*********************************************************************** 0 = ickkw #*********************************************************************** # #*********************************************************************** # BW cutoff (M+/-bwcutoff*Gamma). Determines which resonances are * # written in the LHE event file * #*********************************************************************** 15.0 = bwcutoff #*********************************************************************** # Cuts on the jets. Jet clustering is performed by FastJet. * # - When matching to a parton shower, these generation cuts should be * # considerably softer than the analysis cuts. * # - More specific cuts can be specified in SubProcesses/cuts.f * #*********************************************************************** 1.0 = jetalgo ! FastJet jet algorithm (1=kT, 0=C/A, -1=anti-kT) 0.7 = jetradius ! The radius parameter for the jet algorithm 10.0 = ptj ! Min jet transverse momentum -1.0 = etaj ! Max jet abs(pseudo-rap) (a value .lt.0 means no cut) #*********************************************************************** # Cuts on the charged leptons (e+, e-, mu+, mu-, tau+ and tau-) * # More specific cuts can be specified in SubProcesses/cuts.f * #*********************************************************************** 0.0 = ptl ! Min lepton transverse momentum -1.0 = etal ! Max lepton abs(pseudo-rap) (a value .lt.0 means no cut) 0.0 = drll ! Min distance between opposite sign lepton pairs 0.0 = drll_sf ! Min distance between opp. sign same-flavor lepton pairs 0.0 = mll ! Min inv. mass of all opposite sign lepton pairs 30.0 = mll_sf ! Min inv. mass of all opp. sign same-flavor lepton pairs #*********************************************************************** # Photon-isolation cuts, according to hep-ph/9801442. When ptgmin=0, * # all the other parameters are ignored. * # More specific cuts can be specified in SubProcesses/cuts.f * #*********************************************************************** 20.0 = ptgmin ! Min photon transverse momentum -1.0 = etagamma ! Max photon abs(pseudo-rap) 0.4 = R0gamma ! Radius of isolation code 1.0 = xn ! n parameter of eq.(3.4) in hep-ph/9801442 1.0 = epsgamma ! epsilon_gamma parameter of eq.(3.4) in hep-ph/9801442 True = isoEM ! isolate photons from EM energy (photons and leptons) #*********************************************************************** # Cuts associated to MASSIVE particles identified by their PDG codes. * # All cuts are applied to both particles and anti-particles, so use * # POSITIVE PDG CODES only. Example of the syntax is {6 : 100} or * # {6:100, 25:200} for multiple particles * #*********************************************************************** {} = pt_min_pdg ! Min pT for a massive particle {} = pt_max_pdg ! Max pT for a massive particle {} = mxx_min_pdg ! inv. mass for any pair of (anti)particles #*********************************************************************** # For aMCfast+APPLGRID use in PDF fitting (http://amcfast.hepforge.org)* #*********************************************************************** 0 = iappl ! aMCfast switch (0=OFF, 1=prepare grids, 2=fill grids) #*********************************************************************** muR H_T/2 := sum_i mT(i)/2, i=final state muF1 H_T/2 := sum_i mT(i)/2, i=final state muF2 H_T/2 := sum_i mT(i)/2, i=final state QES H_T/2 := sum_i mT(i)/2, i=final state 1 0.320000E+00 2 0.320000E+00 3 0.500000E+00 4 0.155000E+01 5 0.495000E+01 11 0.510999E-03 13 0.105658E+00 15 0.177682E+01 21 0.750000E+00 dyn= -1 muR=0.10000E+01 muF=0.10000E+01 dyn= -1 muR=0.20000E+01 muF=0.10000E+01 dyn= -1 muR=0.50000E+00 muF=0.10000E+01 dyn= -1 muR=0.10000E+01 muF=0.20000E+01 dyn= -1 muR=0.20000E+01 muF=0.20000E+01 dyn= -1 muR=0.50000E+00 muF=0.20000E+01 dyn= -1 muR=0.10000E+01 muF=0.50000E+00 dyn= -1 muR=0.20000E+01 muF=0.50000E+00 dyn= -1 muR=0.50000E+00 muF=0.50000E+00 PDF= 304200 NNPDF31_nlo_as_0118_hessian PDF= 304201 NNPDF31_nlo_as_0118_hessian PDF= 304202 NNPDF31_nlo_as_0118_hessian PDF= 304203 NNPDF31_nlo_as_0118_hessian PDF= 304204 NNPDF31_nlo_as_0118_hessian PDF= 304205 NNPDF31_nlo_as_0118_hessian PDF= 304206 NNPDF31_nlo_as_0118_hessian PDF= 304207 NNPDF31_nlo_as_0118_hessian PDF= 304208 NNPDF31_nlo_as_0118_hessian PDF= 304209 NNPDF31_nlo_as_0118_hessian PDF= 304210 NNPDF31_nlo_as_0118_hessian PDF= 304211 NNPDF31_nlo_as_0118_hessian PDF= 304212 NNPDF31_nlo_as_0118_hessian PDF= 304213 NNPDF31_nlo_as_0118_hessian PDF= 304214 NNPDF31_nlo_as_0118_hessian PDF= 304215 NNPDF31_nlo_as_0118_hessian PDF= 304216 NNPDF31_nlo_as_0118_hessian PDF= 304217 NNPDF31_nlo_as_0118_hessian PDF= 304218 NNPDF31_nlo_as_0118_hessian PDF= 304219 NNPDF31_nlo_as_0118_hessian PDF= 304220 NNPDF31_nlo_as_0118_hessian PDF= 304221 NNPDF31_nlo_as_0118_hessian PDF= 304222 NNPDF31_nlo_as_0118_hessian PDF= 304223 NNPDF31_nlo_as_0118_hessian PDF= 304224 NNPDF31_nlo_as_0118_hessian PDF= 304225 NNPDF31_nlo_as_0118_hessian PDF= 304226 NNPDF31_nlo_as_0118_hessian PDF= 304227 NNPDF31_nlo_as_0118_hessian PDF= 304228 NNPDF31_nlo_as_0118_hessian PDF= 304229 NNPDF31_nlo_as_0118_hessian PDF= 304230 NNPDF31_nlo_as_0118_hessian PDF= 304231 NNPDF31_nlo_as_0118_hessian PDF= 304232 NNPDF31_nlo_as_0118_hessian PDF= 304233 NNPDF31_nlo_as_0118_hessian PDF= 304234 NNPDF31_nlo_as_0118_hessian PDF= 304235 NNPDF31_nlo_as_0118_hessian PDF= 304236 NNPDF31_nlo_as_0118_hessian PDF= 304237 NNPDF31_nlo_as_0118_hessian PDF= 304238 NNPDF31_nlo_as_0118_hessian PDF= 304239 NNPDF31_nlo_as_0118_hessian PDF= 304240 NNPDF31_nlo_as_0118_hessian PDF= 304241 NNPDF31_nlo_as_0118_hessian PDF= 304242 NNPDF31_nlo_as_0118_hessian PDF= 304243 NNPDF31_nlo_as_0118_hessian PDF= 304244 NNPDF31_nlo_as_0118_hessian PDF= 304245 NNPDF31_nlo_as_0118_hessian PDF= 304246 NNPDF31_nlo_as_0118_hessian PDF= 304247 NNPDF31_nlo_as_0118_hessian PDF= 304248 NNPDF31_nlo_as_0118_hessian PDF= 304249 NNPDF31_nlo_as_0118_hessian PDF= 304250 NNPDF31_nlo_as_0118_hessian PDF= 304251 NNPDF31_nlo_as_0118_hessian PDF= 304252 NNPDF31_nlo_as_0118_hessian PDF= 304253 NNPDF31_nlo_as_0118_hessian PDF= 304254 NNPDF31_nlo_as_0118_hessian PDF= 304255 NNPDF31_nlo_as_0118_hessian PDF= 304256 NNPDF31_nlo_as_0118_hessian PDF= 304257 NNPDF31_nlo_as_0118_hessian PDF= 304258 NNPDF31_nlo_as_0118_hessian PDF= 304259 NNPDF31_nlo_as_0118_hessian PDF= 304260 NNPDF31_nlo_as_0118_hessian PDF= 304261 NNPDF31_nlo_as_0118_hessian PDF= 304262 NNPDF31_nlo_as_0118_hessian PDF= 304263 NNPDF31_nlo_as_0118_hessian PDF= 304264 NNPDF31_nlo_as_0118_hessian PDF= 304265 NNPDF31_nlo_as_0118_hessian PDF= 304266 NNPDF31_nlo_as_0118_hessian PDF= 304267 NNPDF31_nlo_as_0118_hessian PDF= 304268 NNPDF31_nlo_as_0118_hessian PDF= 304269 NNPDF31_nlo_as_0118_hessian PDF= 304270 NNPDF31_nlo_as_0118_hessian PDF= 304271 NNPDF31_nlo_as_0118_hessian PDF= 304272 NNPDF31_nlo_as_0118_hessian PDF= 304273 NNPDF31_nlo_as_0118_hessian PDF= 304274 NNPDF31_nlo_as_0118_hessian PDF= 304275 NNPDF31_nlo_as_0118_hessian PDF= 304276 NNPDF31_nlo_as_0118_hessian PDF= 304277 NNPDF31_nlo_as_0118_hessian PDF= 304278 NNPDF31_nlo_as_0118_hessian PDF= 304279 NNPDF31_nlo_as_0118_hessian PDF= 304280 NNPDF31_nlo_as_0118_hessian PDF= 304281 NNPDF31_nlo_as_0118_hessian PDF= 304282 NNPDF31_nlo_as_0118_hessian PDF= 304283 NNPDF31_nlo_as_0118_hessian PDF= 304284 NNPDF31_nlo_as_0118_hessian PDF= 304285 NNPDF31_nlo_as_0118_hessian PDF= 304286 NNPDF31_nlo_as_0118_hessian PDF= 304287 NNPDF31_nlo_as_0118_hessian PDF= 304288 NNPDF31_nlo_as_0118_hessian PDF= 304289 NNPDF31_nlo_as_0118_hessian PDF= 304290 NNPDF31_nlo_as_0118_hessian PDF= 304291 NNPDF31_nlo_as_0118_hessian PDF= 304292 NNPDF31_nlo_as_0118_hessian PDF= 304293 NNPDF31_nlo_as_0118_hessian PDF= 304294 NNPDF31_nlo_as_0118_hessian PDF= 304295 NNPDF31_nlo_as_0118_hessian PDF= 304296 NNPDF31_nlo_as_0118_hessian PDF= 304297 NNPDF31_nlo_as_0118_hessian PDF= 304298 NNPDF31_nlo_as_0118_hessian PDF= 304299 NNPDF31_nlo_as_0118_hessian PDF= 304300 NNPDF31_nlo_as_0118_hessian